File size: 10,385 Bytes
82a7a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
from tinytroupe.utils import JsonSerializableRegistry
import tinytroupe.utils as utils

from tinytroupe.agent import logger
from llama_index.core import  VectorStoreIndex, SimpleDirectoryReader



#######################################################################################################################
# Grounding connectors
#######################################################################################################################

class GroundingConnector(JsonSerializableRegistry):
    """
    An abstract class representing a grounding connector. A grounding connector is a component that allows an agent to ground
    its knowledge in external sources, such as files, web pages, databases, etc.
    """

    serializable_attributes = ["name"]

    def __init__(self, name:str) -> None:
        self.name = name
    
    def retrieve_relevant(self, relevance_target:str, source:str, top_k=20) -> list:
        raise NotImplementedError("Subclasses must implement this method.")
    
    def retrieve_by_name(self, name:str) -> str:
        raise NotImplementedError("Subclasses must implement this method.")
    
    def list_sources(self) -> list:
        raise NotImplementedError("Subclasses must implement this method.")


@utils.post_init
class BaseSemanticGroundingConnector(GroundingConnector):
    """
    A base class for semantic grounding connectors. A semantic grounding connector is a component that indexes and retrieves
    documents based on so-called "semantic search" (i.e, embeddings-based search). This specific implementation
    is based on the VectorStoreIndex class from the LLaMa-Index library. Here, "documents" refer to the llama-index's
    data structure that stores a unit of content, not necessarily a file.
    """

    serializable_attributes = ["documents"]

    def __init__(self, name:str="Semantic Grounding") -> None:
        super().__init__(name)

        self.documents = None 
        self.name_to_document = None

        # @post_init ensures that _post_init is called after the __init__ method
    
    def _post_init(self):
        """
        This will run after __init__, since the class has the @post_init decorator.
        It is convenient to separate some of the initialization processes to make deserialize easier.
        """
        self.index = None

        if not hasattr(self, 'documents') or self.documents is None:
            self.documents = []
        
        if not hasattr(self, 'name_to_document') or self.name_to_document is None:
            self.name_to_document = {}

        self.add_documents(self.documents)       

    def retrieve_relevant(self, relevance_target:str, top_k=20) -> list:
        """
        Retrieves all values from memory that are relevant to a given target.
        """
        if self.index is not None:
            retriever = self.index.as_retriever(similarity_top_k=top_k)
            nodes = retriever.retrieve(relevance_target)
        else:
            nodes = []

        retrieved = []
        for node in nodes:
            content = "SOURCE: " + node.metadata.get('file_name', '(unknown)')
            content += "\n" + "SIMILARITY SCORE:" + str(node.score)
            content += "\n" + "RELEVANT CONTENT:" + node.text
            retrieved.append(content)

            logger.debug(f"Content retrieved: {content[:200]}")

        return retrieved
    
    def retrieve_by_name(self, name:str) -> list:
        """
        Retrieves a content source by its name.
        """
        # TODO also optionally provide a relevance target?
        results = []
        if self.name_to_document is not None and name in self.name_to_document:
            docs = self.name_to_document[name]
            for i, doc in enumerate(docs):
                if doc is not None:
                    content = f"SOURCE: {name}\n"
                    content += f"PAGE: {i}\n"
                    content += "CONTENT: \n" + doc.text[:10000] # TODO a more intelligent way to limit the content
                    results.append(content)
                    
        return results
        
        
    def list_sources(self) -> list:
        """
        Lists the names of the available content sources.
        """
        if self.name_to_document is not None:
            return list(self.name_to_document.keys())
        else:
            return []
    
    def add_document(self, document, doc_to_name_func=None) -> None:
        """
        Indexes a document for semantic retrieval.
        """
        self.add_documents([document], doc_to_name_func)

    def add_documents(self, new_documents, doc_to_name_func=None) -> list:
        """
        Indexes documents for semantic retrieval.
        """
        # index documents by name
        if len(new_documents) > 0:
            # add the new documents to the list of documents
            self.documents += new_documents

            # process documents individually too
            for document in new_documents:
                
                # out of an abundance of caution, we sanitize the text
                document.text = utils.sanitize_raw_string(document.text)

                if doc_to_name_func is not None:
                    name = doc_to_name_func(document)
                    
                    # self.name_to_document[name] contains a list, since each source file could be split into multiple pages
                    if name in self.name_to_document:
                        self.name_to_document[name].append(document)
                    else:
                        self.name_to_document[name] = [document]


            # index documents for semantic retrieval
            if self.index is None:
                self.index = VectorStoreIndex.from_documents(self.documents)
            else:
                self.index.refresh(self.documents)
    
    

@utils.post_init
class LocalFilesGroundingConnector(BaseSemanticGroundingConnector):

    serializable_attributes = ["folders_paths"]

    def __init__(self, name:str="Local Files", folders_paths: list=None) -> None:
        super().__init__(name)

        self.folders_paths = folders_paths

        # @post_init ensures that _post_init is called after the __init__ method
    
    def _post_init(self):
        """
        This will run after __init__, since the class has the @post_init decorator.
        It is convenient to separate some of the initialization processes to make deserialize easier.
        """
        self.loaded_folders_paths = []

        if not hasattr(self, 'folders_paths') or self.folders_paths is None:
            self.folders_paths = []

        self.add_folders(self.folders_paths)

    def add_folders(self, folders_paths:list) -> None:
        """
        Adds a path to a folder with files used for grounding.
        """

        if folders_paths is not None:
            for folder_path in folders_paths:
                try:
                    logger.debug(f"Adding the following folder to grounding index: {folder_path}")
                    self.add_folder(folder_path)
                except (FileNotFoundError, ValueError) as e:
                    print(f"Error: {e}")
                    print(f"Current working directory: {os.getcwd()}")
                    print(f"Provided path: {folder_path}")
                    print("Please check if the path exists and is accessible.")

    def add_folder(self, folder_path:str) -> None:
        """
        Adds a path to a folder with files used for grounding.
        """

        if folder_path not in self.loaded_folders_paths:
            self._mark_folder_as_loaded(folder_path)

            # for PDF files, please note that the document will be split into pages: https://github.com/run-llama/llama_index/issues/15903
            new_files = SimpleDirectoryReader(folder_path).load_data()
            self.add_documents(new_files, lambda doc: doc.metadata["file_name"])
    
    def add_file_path(self, file_path:str) -> None:
        """
        Adds a path to a file used for grounding.
        """
        # a trick to make SimpleDirectoryReader work with a single file
        new_files = SimpleDirectoryReader(input_files=[file_path]).load_data()
        
        logger.debug(f"Adding the following file to grounding index: {new_files}")
        self.add_documents(new_files, lambda doc: doc.metadata["file_name"])
    
    def _mark_folder_as_loaded(self, folder_path:str) -> None:
        if folder_path not in self.loaded_folders_paths:
            self.loaded_folders_paths.append(folder_path)
        
        if folder_path not in self.folders_paths:
            self.folders_paths.append(folder_path)
    

@utils.post_init
class WebPagesGroundingConnector(BaseSemanticGroundingConnector):

    serializable_attributes = ["web_urls"]

    def __init__(self, name:str="Web Pages", web_urls: list=None) -> None:
        super().__init__(name)

        self.web_urls = web_urls

        # @post_init ensures that _post_init is called after the __init__ method
    
    def _post_init(self):
        self.loaded_web_urls = []

        if not hasattr(self, 'web_urls') or self.web_urls is None:
            self.web_urls = []

        # load web urls
        self.add_web_urls(self.web_urls)
    
    def add_web_urls(self, web_urls:list) -> None:
        """ 
        Adds the data retrieved from the specified URLs to grounding.
        """
        filtered_web_urls = [url for url in web_urls if url not in self.loaded_web_urls]
        for url in filtered_web_urls:
            self._mark_web_url_as_loaded(url)

        if len(filtered_web_urls) > 0:
            new_documents = SimpleWebPageReader(html_to_text=True).load_data(filtered_web_urls)
            self.add_documents(new_documents, lambda doc: doc.id_)
    
    def add_web_url(self, web_url:str) -> None:
        """
        Adds the data retrieved from the specified URL to grounding.
        """
        # we do it like this because the add_web_urls could run scrapes in parallel, so it is better
        # to implement this one in terms of the other
        self.add_web_urls([web_url])
    
    def _mark_web_url_as_loaded(self, web_url:str) -> None:
        if web_url not in self.loaded_web_urls:
            self.loaded_web_urls.append(web_url)
        
        if web_url not in self.web_urls:
            self.web_urls.append(web_url)