muni's picture
Add TinyTroupe
82a7a28
from tinytroupe.agent import logger, default, Self, AgentOrWorld, CognitiveActionModel
from tinytroupe.agent.memory import EpisodicMemory, SemanticMemory
import tinytroupe.openai_utils as openai_utils
from tinytroupe.utils import JsonSerializableRegistry, repeat_on_error, name_or_empty
import tinytroupe.utils as utils
from tinytroupe.control import transactional, current_simulation
import os
import json
import copy
import textwrap # to dedent strings
import chevron # to parse Mustache templates
from typing import Any
from rich import print
#######################################################################################################################
# TinyPerson itself
#######################################################################################################################
@utils.post_init
class TinyPerson(JsonSerializableRegistry):
"""A simulated person in the TinyTroupe universe."""
# The maximum number of actions that an agent is allowed to perform before DONE.
# This prevents the agent from acting without ever stopping.
MAX_ACTIONS_BEFORE_DONE = 15
PP_TEXT_WIDTH = 100
serializable_attributes = ["_persona", "_mental_state", "_mental_faculties", "episodic_memory", "semantic_memory"]
serializable_attributes_renaming = {"_mental_faculties": "mental_faculties", "_persona": "persona", "_mental_state": "mental_state"}
# A dict of all agents instantiated so far.
all_agents = {} # name -> agent
# The communication style for all agents: "simplified" or "full".
communication_style:str="simplified"
# Whether to display the communication or not. True is for interactive applications, when we want to see simulation
# outputs as they are produced.
communication_display:bool=True
def __init__(self, name:str=None,
episodic_memory=None,
semantic_memory=None,
mental_faculties:list=None):
"""
Creates a TinyPerson.
Args:
name (str): The name of the TinyPerson. Either this or spec_path must be specified.
episodic_memory (EpisodicMemory, optional): The memory implementation to use. Defaults to EpisodicMemory().
semantic_memory (SemanticMemory, optional): The memory implementation to use. Defaults to SemanticMemory().
mental_faculties (list, optional): A list of mental faculties to add to the agent. Defaults to None.
"""
# NOTE: default values will be given in the _post_init method, as that's shared by
# direct initialization as well as via deserialization.
if episodic_memory is not None:
self.episodic_memory = episodic_memory
if semantic_memory is not None:
self.semantic_memory = semantic_memory
# Mental faculties
if mental_faculties is not None:
self._mental_faculties = mental_faculties
assert name is not None, "A TinyPerson must have a name."
self.name = name
# @post_init makes sure that _post_init is called after __init__
def _post_init(self, **kwargs):
"""
This will run after __init__, since the class has the @post_init decorator.
It is convenient to separate some of the initialization processes to make deserialize easier.
"""
############################################################
# Default values
############################################################
self.current_messages = []
# the current environment in which the agent is acting
self.environment = None
# The list of actions that this agent has performed so far, but which have not been
# consumed by the environment yet.
self._actions_buffer = []
# The list of agents that this agent can currently interact with.
# This can change over time, as agents move around the world.
self._accessible_agents = []
# the buffer of communications that have been displayed so far, used for
# saving these communications to another output form later (e.g., caching)
self._displayed_communications_buffer = []
if not hasattr(self, 'episodic_memory'):
# This default value MUST NOT be in the method signature, otherwise it will be shared across all instances.
self.episodic_memory = EpisodicMemory()
if not hasattr(self, 'semantic_memory'):
# This default value MUST NOT be in the method signature, otherwise it will be shared across all instances.
self.semantic_memory = SemanticMemory()
# _mental_faculties
if not hasattr(self, '_mental_faculties'):
# This default value MUST NOT be in the method signature, otherwise it will be shared across all instances.
self._mental_faculties = []
# create the persona configuration dictionary
if not hasattr(self, '_persona'):
self._persona = {
"name": self.name,
"age": None,
"nationality": None,
"country_of_residence": None,
"occupation": None,
"routines": [],
"occupation_description": None,
"personality_traits": [],
"professional_interests": [],
"personal_interests": [],
"skills": [],
"relationships": []
}
if not hasattr(self, 'name'):
self.name = self._persona["name"]
# create the mental state dictionary
if not hasattr(self, '_mental_state'):
self._mental_state = {
"datetime": None,
"location": None,
"context": [],
"goals": [],
"attention": None,
"emotions": "Feeling nothing in particular, just calm.",
"memory_context": None,
"accessible_agents": [] # [{"agent": agent_1, "relation": "My friend"}, {"agent": agent_2, "relation": "My colleague"}, ...]
}
if not hasattr(self, '_extended_agent_summary'):
self._extended_agent_summary = None
self._prompt_template_path = os.path.join(
os.path.dirname(__file__), "prompts/tiny_person.mustache"
)
self._init_system_message = None # initialized later
############################################################
# Special mechanisms used during deserialization
############################################################
# rename agent to some specific name?
if kwargs.get("new_agent_name") is not None:
self._rename(kwargs.get("new_agent_name"))
# If auto-rename, use the given name plus some new number ...
if kwargs.get("auto_rename") is True:
new_name = self.name # start with the current name
rename_succeeded = False
while not rename_succeeded:
try:
self._rename(new_name)
TinyPerson.add_agent(self)
rename_succeeded = True
except ValueError:
new_id = utils.fresh_id()
new_name = f"{self.name}_{new_id}"
# ... otherwise, just register the agent
else:
# register the agent in the global list of agents
TinyPerson.add_agent(self)
# start with a clean slate
self.reset_prompt()
# it could be the case that the agent is being created within a simulation scope, in which case
# the simulation_id must be set accordingly
if current_simulation() is not None:
current_simulation().add_agent(self)
else:
self.simulation_id = None
def _rename(self, new_name:str):
self.name = new_name
self._persona["name"] = self.name
def generate_agent_system_prompt(self):
with open(self._prompt_template_path, "r") as f:
agent_prompt_template = f.read()
# let's operate on top of a copy of the configuration, because we'll need to add more variables, etc.
template_variables = self._persona.copy()
template_variables["persona"] = json.dumps(self._persona.copy(), indent=4)
# Prepare additional action definitions and constraints
actions_definitions_prompt = ""
actions_constraints_prompt = ""
for faculty in self._mental_faculties:
actions_definitions_prompt += f"{faculty.actions_definitions_prompt()}\n"
actions_constraints_prompt += f"{faculty.actions_constraints_prompt()}\n"
# Make the additional prompt pieces available to the template.
# Identation here is to align with the text structure in the template.
template_variables['actions_definitions_prompt'] = textwrap.indent(actions_definitions_prompt.strip(), " ")
template_variables['actions_constraints_prompt'] = textwrap.indent(actions_constraints_prompt.strip(), " ")
# RAI prompt components, if requested
template_variables = utils.add_rai_template_variables_if_enabled(template_variables)
return chevron.render(agent_prompt_template, template_variables)
def reset_prompt(self):
# render the template with the current configuration
self._init_system_message = self.generate_agent_system_prompt()
# TODO actually, figure out another way to update agent state without "changing history"
# reset system message
self.current_messages = [
{"role": "system", "content": self._init_system_message}
]
# sets up the actual interaction messages to use for prompting
self.current_messages += self.retrieve_recent_memories()
# add a final user message, which is neither stimuli or action, to instigate the agent to act properly
self.current_messages.append({"role": "user",
"content": "Now you **must** generate a sequence of actions following your interaction directives, " +\
"and complying with **all** instructions and contraints related to the action you use." +\
"DO NOT repeat the exact same action more than once in a row!" +\
"DO NOT keep saying or doing very similar things, but instead try to adapt and make the interactions look natural." +\
"These actions **MUST** be rendered following the JSON specification perfectly, including all required keys (even if their value is empty), **ALWAYS**."
})
def get(self, key):
"""
Returns the definition of a key in the TinyPerson's configuration.
"""
return self._persona.get(key, None)
@transactional
def import_fragment(self, path):
"""
Imports a fragment of a persona configuration from a JSON file.
"""
with open(path, "r") as f:
fragment = json.load(f)
# check the type is "Fragment" and that there's also a "persona" key
if fragment.get("type", None) == "Fragment" and fragment.get("persona", None) is not None:
self.include_persona_definitions(fragment["persona"])
else:
raise ValueError("The imported JSON file must be a valid fragment of a persona configuration.")
# must reset prompt after adding to configuration
self.reset_prompt()
@transactional
def include_persona_definitions(self, additional_definitions: dict):
"""
Imports a set of definitions into the TinyPerson. They will be merged with the current configuration.
It is also a convenient way to include multiple bundled definitions into the agent.
Args:
additional_definitions (dict): The additional definitions to import.
"""
self._persona = utils.merge_dicts(self._persona, additional_definitions)
# must reset prompt after adding to configuration
self.reset_prompt()
@transactional
def define(self, key, value, merge=True, overwrite_scalars=True):
"""
Define a value to the TinyPerson's persona configuration. Value can either be a scalar or a dictionary.
If the value is a dictionary or list, you can choose to merge it with the existing value or replace it.
If the value is a scalar, you can choose to overwrite the existing value or not.
Args:
key (str): The key to define.
value (Any): The value to define.
merge (bool, optional): Whether to merge the dict/list values with the existing values or replace them. Defaults to True.
overwrite_scalars (bool, optional): Whether to overwrite scalar values or not. Defaults to True.
"""
# dedent value if it is a string
if isinstance(value, str):
value = textwrap.dedent(value)
# if the value is a dictionary, we can choose to merge it with the existing value or replace it
if isinstance(value, dict) or isinstance(value, list):
if merge:
self._persona = utils.merge_dicts(self._persona, {key: value})
else:
self._persona[key] = value
# if the value is a scalar, we can choose to overwrite it or not
elif overwrite_scalars or (key not in self._persona):
self._persona[key] = value
else:
raise ValueError(f"The key '{key}' already exists in the persona configuration and overwrite_scalars is set to False.")
# must reset prompt after adding to configuration
self.reset_prompt()
@transactional
def define_relationships(self, relationships, replace=True):
"""
Defines or updates the TinyPerson's relationships.
Args:
relationships (list or dict): The relationships to add or replace. Either a list of dicts mapping agent names to relationship descriptions,
or a single dict mapping one agent name to its relationship description.
replace (bool, optional): Whether to replace the current relationships or just add to them. Defaults to True.
"""
if (replace == True) and (isinstance(relationships, list)):
self._persona['relationships'] = relationships
elif replace == False:
current_relationships = self._persona['relationships']
if isinstance(relationships, list):
for r in relationships:
current_relationships.append(r)
elif isinstance(relationships, dict) and len(relationships) == 2: #{"Name": ..., "Description": ...}
current_relationships.append(relationships)
else:
raise Exception("Only one key-value pair is allowed in the relationships dict.")
else:
raise Exception("Invalid arguments for define_relationships.")
@transactional
def clear_relationships(self):
"""
Clears the TinyPerson's relationships.
"""
self._persona['relationships'] = []
return self
@transactional
def related_to(self, other_agent, description, symmetric_description=None):
"""
Defines a relationship between this agent and another agent.
Args:
other_agent (TinyPerson): The other agent.
description (str): The description of the relationship.
symmetric (bool): Whether the relationship is symmetric or not. That is,
if the relationship is defined for both agents.
Returns:
TinyPerson: The agent itself, to facilitate chaining.
"""
self.define_relationships([{"Name": other_agent.name, "Description": description}], replace=False)
if symmetric_description is not None:
other_agent.define_relationships([{"Name": self.name, "Description": symmetric_description}], replace=False)
return self
def add_mental_faculties(self, mental_faculties):
"""
Adds a list of mental faculties to the agent.
"""
for faculty in mental_faculties:
self.add_mental_faculty(faculty)
return self
def add_mental_faculty(self, faculty):
"""
Adds a mental faculty to the agent.
"""
# check if the faculty is already there or not
if faculty not in self._mental_faculties:
self._mental_faculties.append(faculty)
else:
raise Exception(f"The mental faculty {faculty} is already present in the agent.")
return self
@transactional
def act(
self,
until_done=True,
n=None,
return_actions=False,
max_content_length=default["max_content_display_length"],
):
"""
Acts in the environment and updates its internal cognitive state.
Either acts until the agent is done and needs additional stimuli, or acts a fixed number of times,
but not both.
Args:
until_done (bool): Whether to keep acting until the agent is done and needs additional stimuli.
n (int): The number of actions to perform. Defaults to None.
return_actions (bool): Whether to return the actions or not. Defaults to False.
"""
# either act until done or act a fixed number of times, but not both
assert not (until_done and n is not None)
if n is not None:
assert n < TinyPerson.MAX_ACTIONS_BEFORE_DONE
contents = []
# A separate function to run before each action, which is not meant to be repeated in case of errors.
def aux_pre_act():
# TODO maybe we don't need this at all anymore?
#
# A quick thought before the action. This seems to help with better model responses, perhaps because
# it interleaves user with assistant messages.
pass # self.think("I will now think, reflect and act a bit, and then issue DONE.")
# Aux function to perform exactly one action.
# Occasionally, the model will return JSON missing important keys, so we just ask it to try again
# Sometimes `content` contains EpisodicMemory's MEMORY_BLOCK_OMISSION_INFO message, which raises a TypeError on line 443
@repeat_on_error(retries=5, exceptions=[KeyError, TypeError])
def aux_act_once():
role, content = self._produce_message()
cognitive_state = content["cognitive_state"]
action = content['action']
logger.debug(f"{self.name}'s action: {action}")
goals = cognitive_state['goals']
attention = cognitive_state['attention']
emotions = cognitive_state['emotions']
self.store_in_memory({'role': role, 'content': content,
'type': 'action',
'simulation_timestamp': self.iso_datetime()})
self._actions_buffer.append(action)
self._update_cognitive_state(goals=cognitive_state['goals'],
attention=cognitive_state['attention'],
emotions=cognitive_state['emotions'])
contents.append(content)
if TinyPerson.communication_display:
self._display_communication(role=role, content=content, kind='action', simplified=True, max_content_length=max_content_length)
#
# Some actions induce an immediate stimulus or other side-effects. We need to process them here, by means of the mental faculties.
#
for faculty in self._mental_faculties:
faculty.process_action(self, action)
#
# How to proceed with a sequence of actions.
#
##### Option 1: run N actions ######
if n is not None:
for i in range(n):
aux_pre_act()
aux_act_once()
##### Option 2: run until DONE ######
elif until_done:
while (len(contents) == 0) or (
not contents[-1]["action"]["type"] == "DONE"
):
# check if the agent is acting without ever stopping
if len(contents) > TinyPerson.MAX_ACTIONS_BEFORE_DONE:
logger.warning(f"[{self.name}] Agent {self.name} is acting without ever stopping. This may be a bug. Let's stop it here anyway.")
break
if len(contents) > 4: # just some minimum number of actions to check for repetition, could be anything >= 3
# if the last three actions were the same, then we are probably in a loop
if contents[-1]['action'] == contents[-2]['action'] == contents[-3]['action']:
logger.warning(f"[{self.name}] Agent {self.name} is acting in a loop. This may be a bug. Let's stop it here anyway.")
break
aux_pre_act()
aux_act_once()
if return_actions:
return contents
@transactional
def listen(
self,
speech,
source: AgentOrWorld = None,
max_content_length=default["max_content_display_length"],
):
"""
Listens to another agent (artificial or human) and updates its internal cognitive state.
Args:
speech (str): The speech to listen to.
source (AgentOrWorld, optional): The source of the speech. Defaults to None.
"""
return self._observe(
stimulus={
"type": "CONVERSATION",
"content": speech,
"source": name_or_empty(source),
},
max_content_length=max_content_length,
)
def socialize(
self,
social_description: str,
source: AgentOrWorld = None,
max_content_length=default["max_content_display_length"],
):
"""
Perceives a social stimulus through a description and updates its internal cognitive state.
Args:
social_description (str): The description of the social stimulus.
source (AgentOrWorld, optional): The source of the social stimulus. Defaults to None.
"""
return self._observe(
stimulus={
"type": "SOCIAL",
"content": social_description,
"source": name_or_empty(source),
},
max_content_length=max_content_length,
)
def see(
self,
visual_description,
source: AgentOrWorld = None,
max_content_length=default["max_content_display_length"],
):
"""
Perceives a visual stimulus through a description and updates its internal cognitive state.
Args:
visual_description (str): The description of the visual stimulus.
source (AgentOrWorld, optional): The source of the visual stimulus. Defaults to None.
"""
return self._observe(
stimulus={
"type": "VISUAL",
"content": visual_description,
"source": name_or_empty(source),
},
max_content_length=max_content_length,
)
def think(self, thought, max_content_length=default["max_content_display_length"]):
"""
Forces the agent to think about something and updates its internal cognitive state.
"""
return self._observe(
stimulus={
"type": "THOUGHT",
"content": thought,
"source": name_or_empty(self),
},
max_content_length=max_content_length,
)
def internalize_goal(
self, goal, max_content_length=default["max_content_display_length"]
):
"""
Internalizes a goal and updates its internal cognitive state.
"""
return self._observe(
stimulus={
"type": "INTERNAL_GOAL_FORMULATION",
"content": goal,
"source": name_or_empty(self),
},
max_content_length=max_content_length,
)
@transactional
def _observe(self, stimulus, max_content_length=default["max_content_display_length"]):
stimuli = [stimulus]
content = {"stimuli": stimuli}
logger.debug(f"[{self.name}] Observing stimuli: {content}")
# whatever comes from the outside will be interpreted as coming from 'user', simply because
# this is the counterpart of 'assistant'
self.store_in_memory({'role': 'user', 'content': content,
'type': 'stimulus',
'simulation_timestamp': self.iso_datetime()})
if TinyPerson.communication_display:
self._display_communication(
role="user",
content=content,
kind="stimuli",
simplified=True,
max_content_length=max_content_length,
)
return self # allows easier chaining of methods
@transactional
def listen_and_act(
self,
speech,
return_actions=False,
max_content_length=default["max_content_display_length"],
):
"""
Convenience method that combines the `listen` and `act` methods.
"""
self.listen(speech, max_content_length=max_content_length)
return self.act(
return_actions=return_actions, max_content_length=max_content_length
)
@transactional
def see_and_act(
self,
visual_description,
return_actions=False,
max_content_length=default["max_content_display_length"],
):
"""
Convenience method that combines the `see` and `act` methods.
"""
self.see(visual_description, max_content_length=max_content_length)
return self.act(
return_actions=return_actions, max_content_length=max_content_length
)
@transactional
def think_and_act(
self,
thought,
return_actions=False,
max_content_length=default["max_content_display_length"],
):
"""
Convenience method that combines the `think` and `act` methods.
"""
self.think(thought, max_content_length=max_content_length)
return self.act(return_actions=return_actions, max_content_length=max_content_length)
def read_documents_from_folder(self, documents_path:str):
"""
Reads documents from a directory and loads them into the semantic memory.
"""
logger.info(f"Setting documents path to {documents_path} and loading documents.")
self.semantic_memory.add_documents_path(documents_path)
def read_document_from_file(self, file_path:str):
"""
Reads a document from a file and loads it into the semantic memory.
"""
logger.info(f"Reading document from file: {file_path}")
self.semantic_memory.add_document_path(file_path)
def read_documents_from_web(self, web_urls:list):
"""
Reads documents from web URLs and loads them into the semantic memory.
"""
logger.info(f"Reading documents from the following web URLs: {web_urls}")
self.semantic_memory.add_web_urls(web_urls)
def read_document_from_web(self, web_url:str):
"""
Reads a document from a web URL and loads it into the semantic memory.
"""
logger.info(f"Reading document from web URL: {web_url}")
self.semantic_memory.add_web_url(web_url)
@transactional
def move_to(self, location, context=[]):
"""
Moves to a new location and updates its internal cognitive state.
"""
self._mental_state["location"] = location
# context must also be updated when moved, since we assume that context is dictated partly by location.
self.change_context(context)
@transactional
def change_context(self, context: list):
"""
Changes the context and updates its internal cognitive state.
"""
self._mental_state["context"] = {
"description": item for item in context
}
self._update_cognitive_state(context=context)
@transactional
def make_agent_accessible(
self,
agent: Self,
relation_description: str = "An agent I can currently interact with.",
):
"""
Makes an agent accessible to this agent.
"""
if agent not in self._accessible_agents:
self._accessible_agents.append(agent)
self._mental_state["accessible_agents"].append(
{"name": agent.name, "relation_description": relation_description}
)
else:
logger.warning(
f"[{self.name}] Agent {agent.name} is already accessible to {self.name}."
)
@transactional
def make_agent_inaccessible(self, agent: Self):
"""
Makes an agent inaccessible to this agent.
"""
if agent in self._accessible_agents:
self._accessible_agents.remove(agent)
else:
logger.warning(
f"[{self.name}] Agent {agent.name} is already inaccessible to {self.name}."
)
@transactional
def make_all_agents_inaccessible(self):
"""
Makes all agents inaccessible to this agent.
"""
self._accessible_agents = []
self._mental_state["accessible_agents"] = []
@transactional
def _produce_message(self):
# logger.debug(f"Current messages: {self.current_messages}")
# ensure we have the latest prompt (initial system message + selected messages from memory)
self.reset_prompt()
messages = [
{"role": msg["role"], "content": json.dumps(msg["content"])}
for msg in self.current_messages
]
logger.debug(f"[{self.name}] Sending messages to OpenAI API")
logger.debug(f"[{self.name}] Last interaction: {messages[-1]}")
next_message = openai_utils.client().send_message(messages, response_format=CognitiveActionModel)
logger.debug(f"[{self.name}] Received message: {next_message}")
return next_message["role"], utils.extract_json(next_message["content"])
###########################################################
# Internal cognitive state changes
###########################################################
@transactional
def _update_cognitive_state(
self, goals=None, context=None, attention=None, emotions=None
):
"""
Update the TinyPerson's cognitive state.
"""
# Update current datetime. The passage of time is controlled by the environment, if any.
if self.environment is not None and self.environment.current_datetime is not None:
self._mental_state["datetime"] = utils.pretty_datetime(self.environment.current_datetime)
# update current goals
if goals is not None:
self._mental_state["goals"] = goals
# update current context
if context is not None:
self._mental_state["context"] = context
# update current attention
if attention is not None:
self._mental_state["attention"] = attention
# update current emotions
if emotions is not None:
self._mental_state["emotions"] = emotions
# update relevant memories for the current situation
current_memory_context = self.retrieve_relevant_memories_for_current_context()
self._mental_state["memory_context"] = current_memory_context
self.reset_prompt()
###########################################################
# Memory management
###########################################################
def store_in_memory(self, value: Any) -> list:
# TODO find another smarter way to abstract episodic information into semantic memory
# self.semantic_memory.store(value)
self.episodic_memory.store(value)
def optimize_memory(self):
pass #TODO
def retrieve_memories(self, first_n: int, last_n: int, include_omission_info:bool=True, max_content_length:int=None) -> list:
episodes = self.episodic_memory.retrieve(first_n=first_n, last_n=last_n, include_omission_info=include_omission_info)
if max_content_length is not None:
episodes = utils.truncate_actions_or_stimuli(episodes, max_content_length)
return episodes
def retrieve_recent_memories(self, max_content_length:int=None) -> list:
episodes = self.episodic_memory.retrieve_recent()
if max_content_length is not None:
episodes = utils.truncate_actions_or_stimuli(episodes, max_content_length)
return episodes
def retrieve_relevant_memories(self, relevance_target:str, top_k=20) -> list:
relevant = self.semantic_memory.retrieve_relevant(relevance_target, top_k=top_k)
return relevant
def retrieve_relevant_memories_for_current_context(self, top_k=7) -> list:
# current context is composed of th recent memories, plus context, goals, attention, and emotions
context = self._mental_state["context"]
goals = self._mental_state["goals"]
attention = self._mental_state["attention"]
emotions = self._mental_state["emotions"]
recent_memories = "\n".join([f" - {m['content']}" for m in self.retrieve_memories(first_n=0, last_n=10, max_content_length=100)])
# put everything together in a nice markdown string to fetch relevant memories
target = f"""
Current Context: {context}
Current Goals: {goals}
Current Attention: {attention}
Current Emotions: {emotions}
Recent Memories:
{recent_memories}
"""
logger.debug(f"Retrieving relevant memories for contextual target: {target}")
return self.retrieve_relevant_memories(target, top_k=top_k)
###########################################################
# Inspection conveniences
###########################################################
def _display_communication(
self,
role,
content,
kind,
simplified=True,
max_content_length=default["max_content_display_length"],
):
"""
Displays the current communication and stores it in a buffer for later use.
"""
if kind == "stimuli":
rendering = self._pretty_stimuli(
role=role,
content=content,
simplified=simplified,
max_content_length=max_content_length,
)
source = content["stimuli"][0]["source"]
target = self.name
elif kind == "action":
rendering = self._pretty_action(
role=role,
content=content,
simplified=simplified,
max_content_length=max_content_length,
)
source = self.name
target = content["action"]["target"]
else:
raise ValueError(f"Unknown communication kind: {kind}")
# if the agent has no parent environment, then it is a free agent and we can display the communication.
# otherwise, the environment will display the communication instead. This is important to make sure that
# the communication is displayed in the correct order, since environments control the flow of their underlying
# agents.
if self.environment is None:
self._push_and_display_latest_communication({"kind": kind, "rendering":rendering, "content": content, "source":source, "target": target})
else:
self.environment._push_and_display_latest_communication({"kind": kind, "rendering":rendering, "content": content, "source":source, "target": target})
def _push_and_display_latest_communication(self, communication):
"""
Pushes the latest communications to the agent's buffer.
"""
self._displayed_communications_buffer.append(communication)
print(communication["rendering"])
def pop_and_display_latest_communications(self):
"""
Pops the latest communications and displays them.
"""
communications = self._displayed_communications_buffer
self._displayed_communications_buffer = []
for communication in communications:
print(communication)
return communications
def clear_communications_buffer(self):
"""
Cleans the communications buffer.
"""
self._displayed_communications_buffer = []
@transactional
def pop_latest_actions(self) -> list:
"""
Returns the latest actions performed by this agent. Typically used
by an environment to consume the actions and provide the appropriate
environmental semantics to them (i.e., effects on other agents).
"""
actions = self._actions_buffer
self._actions_buffer = []
return actions
@transactional
def pop_actions_and_get_contents_for(
self, action_type: str, only_last_action: bool = True
) -> list:
"""
Returns the contents of actions of a given type performed by this agent.
Typically used to perform inspections and tests.
Args:
action_type (str): The type of action to look for.
only_last_action (bool, optional): Whether to only return the contents of the last action. Defaults to False.
"""
actions = self.pop_latest_actions()
# Filter the actions by type
actions = [action for action in actions if action["type"] == action_type]
# If interested only in the last action, return the latest one
if only_last_action:
return actions[-1].get("content", "")
# Otherwise, return all contents from the filtered actions
return "\n".join([action.get("content", "") for action in actions])
#############################################################################################
# Formatting conveniences
#
# For rich colors,
# see: https://rich.readthedocs.io/en/latest/appendix/colors.html#appendix-colors
#############################################################################################
def __repr__(self):
return f"TinyPerson(name='{self.name}')"
@transactional
def minibio(self, extended=True):
"""
Returns a mini-biography of the TinyPerson.
Args:
extended (bool): Whether to include extended information or not.
Returns:
str: The mini-biography.
"""
base_biography = f"{self.name} is a {self._persona['age']} year old {self._persona['occupation']['title']}, {self._persona['nationality']}, currently living in {self._persona['residence']}."
if self._extended_agent_summary is None and extended:
logger.debug(f"Generating extended agent summary for {self.name}.")
self._extended_agent_summary = openai_utils.LLMRequest(
system_prompt="""
You are given a short biography of an agent, as well as a detailed specification of his or her other characteristics
You must then produce a short paragraph (3 or 4 sentences) that **complements** the short biography, adding details about
personality, interests, opinions, skills, etc. Do not repeat the information already given in the short biography.
repeating the information already given. The paragraph should be coherent, consistent and comprehensive. All information
must be grounded on the specification, **do not** create anything new.
""",
user_prompt=f"""
**Short biography:** {base_biography}
**Detailed specification:** {self._persona}
""").call()
if extended:
biography = f"{base_biography} {self._extended_agent_summary}"
else:
biography = base_biography
return biography
def pp_current_interactions(
self,
simplified=True,
skip_system=True,
max_content_length=default["max_content_display_length"],
):
"""
Pretty prints the current messages.
"""
print(
self.pretty_current_interactions(
simplified=simplified,
skip_system=skip_system,
max_content_length=max_content_length,
)
)
def pretty_current_interactions(self, simplified=True, skip_system=True, max_content_length=default["max_content_display_length"], first_n=None, last_n=None, include_omission_info:bool=True):
"""
Returns a pretty, readable, string with the current messages.
"""
lines = []
for message in self.episodic_memory.retrieve(first_n=first_n, last_n=last_n, include_omission_info=include_omission_info):
try:
if not (skip_system and message['role'] == 'system'):
msg_simplified_type = ""
msg_simplified_content = ""
msg_simplified_actor = ""
lines.append(self._pretty_timestamp(message['role'], message['simulation_timestamp']))
if message["role"] == "system":
msg_simplified_actor = "SYSTEM"
msg_simplified_type = message["role"]
msg_simplified_content = message["content"]
lines.append(
f"[dim] {msg_simplified_type}: {msg_simplified_content}[/]"
)
elif message["role"] == "user":
lines.append(
self._pretty_stimuli(
role=message["role"],
content=message["content"],
simplified=simplified,
max_content_length=max_content_length,
)
)
elif message["role"] == "assistant":
lines.append(
self._pretty_action(
role=message["role"],
content=message["content"],
simplified=simplified,
max_content_length=max_content_length,
)
)
else:
lines.append(f"{message['role']}: {message['content']}")
except:
# print(f"ERROR: {message}")
continue
return "\n".join(lines)
def _pretty_stimuli(
self,
role,
content,
simplified=True,
max_content_length=default["max_content_display_length"],
) -> list:
"""
Pretty prints stimuli.
"""
lines = []
msg_simplified_actor = "USER"
for stimus in content["stimuli"]:
if simplified:
if stimus["source"] != "":
msg_simplified_actor = stimus["source"]
else:
msg_simplified_actor = "USER"
msg_simplified_type = stimus["type"]
msg_simplified_content = utils.break_text_at_length(
stimus["content"], max_length=max_content_length
)
indent = " " * len(msg_simplified_actor) + " > "
msg_simplified_content = textwrap.fill(
msg_simplified_content,
width=TinyPerson.PP_TEXT_WIDTH,
initial_indent=indent,
subsequent_indent=indent,
)
#
# Using rich for formatting. Let's make things as readable as possible!
#
rich_style = utils.RichTextStyle.get_style_for("stimulus", msg_simplified_type)
lines.append(
f"[{rich_style}][underline]{msg_simplified_actor}[/] --> [{rich_style}][underline]{self.name}[/]: [{msg_simplified_type}] \n{msg_simplified_content}[/]"
)
else:
lines.append(f"{role}: {content}")
return "\n".join(lines)
def _pretty_action(
self,
role,
content,
simplified=True,
max_content_length=default["max_content_display_length"],
) -> str:
"""
Pretty prints an action.
"""
if simplified:
msg_simplified_actor = self.name
msg_simplified_type = content["action"]["type"]
msg_simplified_content = utils.break_text_at_length(
content["action"].get("content", ""), max_length=max_content_length
)
indent = " " * len(msg_simplified_actor) + " > "
msg_simplified_content = textwrap.fill(
msg_simplified_content,
width=TinyPerson.PP_TEXT_WIDTH,
initial_indent=indent,
subsequent_indent=indent,
)
#
# Using rich for formatting. Let's make things as readable as possible!
#
rich_style = utils.RichTextStyle.get_style_for("action", msg_simplified_type)
return f"[{rich_style}][underline]{msg_simplified_actor}[/] acts: [{msg_simplified_type}] \n{msg_simplified_content}[/]"
else:
return f"{role}: {content}"
def _pretty_timestamp(
self,
role,
timestamp,
) -> str:
"""
Pretty prints a timestamp.
"""
return f">>>>>>>>> Date and time of events: {timestamp}"
def iso_datetime(self) -> str:
"""
Returns the current datetime of the environment, if any.
Returns:
datetime: The current datetime of the environment in ISO forat.
"""
if self.environment is not None and self.environment.current_datetime is not None:
return self.environment.current_datetime.isoformat()
else:
return None
###########################################################
# IO
###########################################################
def save_specification(self, path, include_mental_faculties=True, include_memory=False):
"""
Saves the current configuration to a JSON file.
"""
suppress_attributes = []
# should we include the memory?
if not include_memory:
suppress_attributes.append("episodic_memory")
suppress_attributes.append("semantic_memory")
# should we include the mental faculties?
if not include_mental_faculties:
suppress_attributes.append("_mental_faculties")
self.to_json(suppress=suppress_attributes, file_path=path,
serialization_type_field_name="type")
@staticmethod
def load_specification(path_or_dict, suppress_mental_faculties=False, suppress_memory=False, auto_rename_agent=False, new_agent_name=None):
"""
Loads a JSON agent specification.
Args:
path_or_dict (str or dict): The path to the JSON file or the dictionary itself.
suppress_mental_faculties (bool, optional): Whether to suppress loading the mental faculties. Defaults to False.
suppress_memory (bool, optional): Whether to suppress loading the memory. Defaults to False.
"""
suppress_attributes = []
# should we suppress the mental faculties?
if suppress_mental_faculties:
suppress_attributes.append("_mental_faculties")
# should we suppress the memory?
if suppress_memory:
suppress_attributes.append("episodic_memory")
suppress_attributes.append("semantic_memory")
return TinyPerson.from_json(json_dict_or_path=path_or_dict, suppress=suppress_attributes,
serialization_type_field_name="type",
post_init_params={"auto_rename_agent": auto_rename_agent, "new_agent_name": new_agent_name})
def encode_complete_state(self) -> dict:
"""
Encodes the complete state of the TinyPerson, including the current messages, accessible agents, etc.
This is meant for serialization and caching purposes, not for exporting the state to the user.
"""
to_copy = copy.copy(self.__dict__)
# delete the logger and other attributes that cannot be serialized
del to_copy["environment"]
del to_copy["_mental_faculties"]
to_copy["_accessible_agents"] = [agent.name for agent in self._accessible_agents]
to_copy['episodic_memory'] = self.episodic_memory.to_json()
to_copy['semantic_memory'] = self.semantic_memory.to_json()
to_copy["_mental_faculties"] = [faculty.to_json() for faculty in self._mental_faculties]
state = copy.deepcopy(to_copy)
return state
def decode_complete_state(self, state: dict) -> Self:
"""
Loads the complete state of the TinyPerson, including the current messages,
and produces a new TinyPerson instance.
"""
state = copy.deepcopy(state)
self._accessible_agents = [TinyPerson.get_agent_by_name(name) for name in state["_accessible_agents"]]
self.episodic_memory = EpisodicMemory.from_json(state['episodic_memory'])
self.semantic_memory = SemanticMemory.from_json(state['semantic_memory'])
for i, faculty in enumerate(self._mental_faculties):
faculty = faculty.from_json(state['_mental_faculties'][i])
# delete fields already present in the state
del state["_accessible_agents"]
del state['episodic_memory']
del state['semantic_memory']
del state['_mental_faculties']
# restore other fields
self.__dict__.update(state)
return self
def create_new_agent_from_current_spec(self, new_name:str) -> Self:
"""
Creates a new agent from the current agent's specification.
Args:
new_name (str): The name of the new agent. Agent names must be unique in the simulation,
this is why we need to provide a new name.
"""
new_agent = TinyPerson(name=new_name, spec_path=None)
new_persona = copy.deepcopy(self._persona)
new_persona['name'] = new_name
new_agent._persona = new_persona
return new_agent
@staticmethod
def add_agent(agent):
"""
Adds an agent to the global list of agents. Agent names must be unique,
so this method will raise an exception if the name is already in use.
"""
if agent.name in TinyPerson.all_agents:
raise ValueError(f"Agent name {agent.name} is already in use.")
else:
TinyPerson.all_agents[agent.name] = agent
@staticmethod
def has_agent(agent_name: str):
"""
Checks if an agent is already registered.
"""
return agent_name in TinyPerson.all_agents
@staticmethod
def set_simulation_for_free_agents(simulation):
"""
Sets the simulation if it is None. This allows free agents to be captured by specific simulation scopes
if desired.
"""
for agent in TinyPerson.all_agents.values():
if agent.simulation_id is None:
simulation.add_agent(agent)
@staticmethod
def get_agent_by_name(name):
"""
Gets an agent by name.
"""
if name in TinyPerson.all_agents:
return TinyPerson.all_agents[name]
else:
return None
@staticmethod
def all_agents_names():
"""
Returns the names of all agents.
"""
return list(TinyPerson.all_agents.keys())
@staticmethod
def clear_agents():
"""
Clears the global list of agents.
"""
TinyPerson.all_agents = {}