muni's picture
Add TinyTroupe
82a7a28
"""
Simulation controlling mechanisms.
"""
import json
import os
import tempfile
import tinytroupe
import tinytroupe.utils as utils
import logging
logger = logging.getLogger("tinytroupe")
class Simulation:
STATUS_STOPPED = "stopped"
STATUS_STARTED = "started"
def __init__(self, id="default", cached_trace:list=None):
self.id = id
self.agents = []
self.name_to_agent = {} # {agent_name: agent, ...}
self.environments = []
self.factories = [] # e.g., TinyPersonFactory instances
self.name_to_factory = {} # {factory_name: factory, ...}
self.name_to_environment = {} # {environment_name: environment, ...}
self.status = Simulation.STATUS_STOPPED
self.cache_path = f"./tinytroupe-{id}.cache.json" # default cache path
# should we always automatically checkpoint at the every transaction?
self.auto_checkpoint = False
# whether there are changes not yet saved to the cache file
self.has_unsaved_cache_changes = False
# whether the agent is under a transaction or not, used for managing
# simulation caching later
self._under_transaction = False
# Cache chain mechanism.
#
# stores a list of simulation states.
# Each state is a tuple (prev_node_hash, event_hash, event_output, state), where prev_node_hash is a hash of the previous node in this chain,
# if any, event_hash is a hash of the event that triggered the transition to this state, if any, event_output is the output of the event,
# if any, and state is the actual complete state that resulted.
if cached_trace is None:
self.cached_trace = []
else:
self.cached_trace = cached_trace
self.cache_misses = 0
self.cache_hits = 0
# Execution chain mechanism.
#
# The actual, current, execution trace. Each state is a tuple (prev_node_hash, event_hash, state), where prev_node_hash is a hash
# of the previous node in this chain, if any, event_hash is a hash of the event that triggered the transition to this state, if any,
# event_output is the output of the event, if any, and state is the actual complete state that resulted.
self.execution_trace = []
def begin(self, cache_path:str=None, auto_checkpoint:bool=False):
"""
Marks the start of the simulation being controlled.
Args:
cache_path (str): The path to the cache file. If not specified,
defaults to the default cache path defined in the class.
auto_checkpoint (bool, optional): Whether to automatically checkpoint at the end of each transaction. Defaults to False.
"""
logger.debug(f"Starting simulation, cache_path={cache_path}, auto_checkpoint={auto_checkpoint}.")
# local import to avoid circular dependencies
from tinytroupe.agent import TinyPerson
from tinytroupe.environment import TinyWorld
from tinytroupe.factory.tiny_factory import TinyFactory
if self.status == Simulation.STATUS_STOPPED:
self.status = Simulation.STATUS_STARTED
else:
raise ValueError("Simulation is already started.")
if cache_path is not None:
self.cache_path = cache_path
# should we automatically checkpoint?
self.auto_checkpoint = auto_checkpoint
# clear the agents, environments and other simulated entities, we'll track them from now on
TinyPerson.clear_agents()
TinyWorld.clear_environments()
TinyFactory.clear_factories()
# All automated fresh ids will start from 0 again for this simulation
utils.reset_fresh_id()
# load the cache file, if any
if self.cache_path is not None:
self._load_cache_file(self.cache_path)
def end(self):
"""
Marks the end of the simulation being controlled.
"""
logger.debug("Ending simulation.")
if self.status == Simulation.STATUS_STARTED:
self.status = Simulation.STATUS_STOPPED
self.checkpoint()
else:
raise ValueError("Simulation is already stopped.")
def checkpoint(self):
"""
Saves current simulation trace to a file.
"""
logger.debug("Checkpointing simulation state.")
# save the cache file
if self.has_unsaved_cache_changes:
self._save_cache_file(self.cache_path)
else:
logger.debug("No unsaved cache changes to save to file.")
def add_agent(self, agent):
"""
Adds an agent to the simulation.
"""
if agent.name in self.name_to_agent:
raise ValueError(f"Agent names must be unique, but '{agent.name}' is already defined.")
agent.simulation_id = self.id
self.agents.append(agent)
self.name_to_agent[agent.name] = agent
def add_environment(self, environment):
"""
Adds an environment to the simulation.
"""
if environment.name in self.name_to_environment:
raise ValueError(f"Environment names must be unique, but '{environment.name}' is already defined.")
environment.simulation_id = self.id
self.environments.append(environment)
self.name_to_environment[environment.name] = environment
def add_factory(self, factory):
"""
Adds a factory to the simulation.
"""
if factory.name in self.name_to_factory:
raise ValueError(f"Factory names must be unique, but '{factory.name}' is already defined.")
factory.simulation_id = self.id
self.factories.append(factory)
self.name_to_factory[factory.name] = factory
###################################################################################################
# Cache and execution chain mechanisms
###################################################################################################
def _execution_trace_position(self) -> int:
"""
Returns the current position in the execution trace, or -1 if the execution trace is empty.
"""
return len(self.execution_trace) - 1
def _function_call_hash(self, function_name, *args, **kwargs) -> int:
"""
Computes the hash of the given function call.
"""
event = str((function_name, args, kwargs))
return event
def _skip_execution_with_cache(self):
"""
Skips the current execution, assuming there's a cached state at the same position.
"""
assert len(self.cached_trace) > self._execution_trace_position() + 1, "There's no cached state at the current execution position."
self.execution_trace.append(self.cached_trace[self._execution_trace_position() + 1])
def _is_transaction_event_cached(self, event_hash) -> bool:
"""
Checks whether the given event hash matches the corresponding cached one, if any.
If there's no corresponding cached state, returns True.
"""
# there's cache that could be used
if len(self.cached_trace) > self._execution_trace_position() + 1:
if self._execution_trace_position() >= -1:
# here's a graphical depiction of the logic:
#
# Cache: c0:(c_prev_node_hash_0, c_event_hash_0, _, c_state_0) ------------------> c1:(c_prev_node_hash_1, c_event_hash_1, _, c_state_1) -> ...
# Execution: e0:(e_prev_node_hash_0, e_event_hash_0, _, e_state_0) -<being computed>-> e1:(e_prev_node_hash_1, <being computed>, <being computed>, <being computed>)
# position = 0 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# Must satisfy:
# - event_hash == c_event_hash_1
# - hash(e0) == c_prev_node_hash_1
event_hash_match = event_hash == self.cached_trace[self._execution_trace_position() + 1][1]
prev_node_match = True
return event_hash_match and prev_node_match
else:
raise ValueError("Execution trace position is invalid, must be >= -1, but is ", self._execution_trace_position())
else: # no cache to use
return False
def _drop_cached_trace_suffix(self):
"""
Drops the cached trace suffix starting at the current execution trace position. This effectively
refreshes the cache to the current execution state and starts building a new cache from there.
"""
self.cached_trace = self.cached_trace[:self._execution_trace_position()+1]
def _add_to_execution_trace(self, state: dict, event_hash: int, event_output):
"""
Adds a state to the execution_trace list and computes the appropriate hash.
The computed hash is compared to the hash of the cached trace at the same position,
and if they don't match, the execution is aborted. Similarly, the event_hash is compared
to the hash of the event in the cached trace at the same position, and if they don't match, the execution
is aborted.
"""
# Compute the hash of the previous execution pair, if any
previous_hash = None
# Create a tuple of (hash, state) and append it to the execution_trace list
self.execution_trace.append((previous_hash, event_hash, event_output, state))
def _add_to_cache_trace(self, state: dict, event_hash: int, event_output):
"""
Adds a state to the cached_trace list and computes the appropriate hash.
"""
# Compute the hash of the previous cached pair, if any
previous_hash = None
if self.cached_trace:
previous_hash = utils.custom_hash(self.cached_trace[-1])
# Create a tuple of (hash, state) and append it to the cached_trace list
self.cached_trace.append((previous_hash, event_hash, event_output, state))
self.has_unsaved_cache_changes = True
def _load_cache_file(self, cache_path:str):
"""
Loads the cache file from the given path.
"""
try:
self.cached_trace = json.load(open(cache_path, "r"))
except FileNotFoundError:
logger.info(f"Cache file not found on path: {cache_path}.")
self.cached_trace = []
def _save_cache_file(self, cache_path:str):
"""
Saves the cache file to the given path. Always overwrites.
"""
try:
# Create a temporary file
with tempfile.NamedTemporaryFile('w', delete=False) as temp:
json.dump(self.cached_trace, temp, indent=4)
# Replace the original file with the temporary file
os.replace(temp.name, cache_path)
except Exception as e:
print(f"An error occurred: {e}")
self.has_unsaved_cache_changes = False
###################################################################################################
# Transactional control
###################################################################################################
def begin_transaction(self):
"""
Starts a transaction.
"""
self._under_transaction = True
self._clear_communications_buffers() # TODO <----------------------------------------------------------------
def end_transaction(self):
"""
Ends a transaction.
"""
self._under_transaction = False
def is_under_transaction(self):
"""
Checks if the agent is under a transaction.
"""
return self._under_transaction
def _clear_communications_buffers(self):
"""
Cleans the communications buffers of all agents and environments.
"""
for agent in self.agents:
agent.clear_communications_buffer()
for environment in self.environments:
environment.clear_communications_buffer()
###################################################################################################
# Simulation state handling
###################################################################################################
def _encode_simulation_state(self) -> dict:
"""
Encodes the current simulation state, including agents, environments, and other
relevant information.
"""
state = {}
# Encode agents
state["agents"] = []
for agent in self.agents:
state["agents"].append(agent.encode_complete_state())
# Encode environments
state["environments"] = []
for environment in self.environments:
state["environments"].append(environment.encode_complete_state())
# Encode factories
state["factories"] = []
for factory in self.factories:
state["factories"].append(factory.encode_complete_state())
return state
def _decode_simulation_state(self, state: dict):
"""
Decodes the given simulation state, including agents, environments, and other
relevant information.
Args:
state (dict): The state to decode.
"""
# local import to avoid circular dependencies
from tinytroupe.agent import TinyPerson
from tinytroupe.environment import TinyWorld
logger.debug(f"Decoding simulation state: {state['factories']}")
logger.debug(f"Registered factories: {self.name_to_factory}")
logger.debug(f"Registered agents: {self.name_to_agent}")
logger.debug(f"Registered environments: {self.name_to_environment}")
# Decode factories
for factory_state in state["factories"]:
factory = self.name_to_factory[factory_state["name"]]
factory.decode_complete_state(factory_state)
# Decode environments
###self.environments = []
for environment_state in state["environments"]:
try:
environment = self.name_to_environment[environment_state["name"]]
environment.decode_complete_state(environment_state)
if TinyWorld.communication_display:
environment.pop_and_display_latest_communications()
except Exception as e:
raise ValueError(f"Environment {environment_state['name']} is not in the simulation, thus cannot be decoded there.") from e
# Decode agents (if they were not already decoded by the environment)
####self.agents = []
for agent_state in state["agents"]:
try:
agent = self.name_to_agent[agent_state["name"]]
agent.decode_complete_state(agent_state)
# The agent has not yet been decoded because it is not in any environment. So, decode it.
if agent.environment is None:
if TinyPerson.communication_display:
agent.pop_and_display_latest_communications()
except Exception as e:
raise ValueError(f"Agent {agent_state['name']} is not in the simulation, thus cannot be decoded there.") from e
class Transaction:
def __init__(self, obj_under_transaction, simulation, function, *args, **kwargs):
# local import to avoid circular dependencies
from tinytroupe.agent import TinyPerson
from tinytroupe.environment import TinyWorld
from tinytroupe.factory.tiny_factory import TinyFactory
self.obj_under_transaction = obj_under_transaction
self.simulation = simulation
self.function_name = function.__name__
self.function = function
self.args = args
self.kwargs = kwargs
#
# If we have an ongoing simulation, set the simulation id of the object under transaction if it is not already set.
#
if simulation is not None:
if hasattr(obj_under_transaction, 'simulation_id') and obj_under_transaction.simulation_id is not None:
if obj_under_transaction.simulation_id != simulation.id:
raise ValueError(f"Object {obj_under_transaction} is already captured by a different simulation (id={obj_under_transaction.simulation_id}), \
and cannot be captured by simulation id={simulation.id}.")
logger.debug(f">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Object {obj_under_transaction} is already captured by simulation {simulation.id}.")
else:
# if is a TinyPerson, add the agent to the simulation
if isinstance(obj_under_transaction, TinyPerson):
simulation.add_agent(obj_under_transaction)
logger.debug(f">>>>>>>>>>>>>>>>>>>>>>> Added agent {obj_under_transaction} to simulation {simulation.id}.")
# if is a TinyWorld, add the environment to the simulation
elif isinstance(obj_under_transaction, TinyWorld):
simulation.add_environment(obj_under_transaction)
# if is a TinyFactory, add the factory to the simulation
elif isinstance(obj_under_transaction, TinyFactory):
simulation.add_factory(obj_under_transaction)
logger.debug(f">>>>>>>>>>>>>>>>>>>>>>> Added factory {obj_under_transaction} to simulation {simulation.id}.")
else:
raise ValueError(f"Object {obj_under_transaction} (type = {type(obj_under_transaction)}) is not a TinyPerson or TinyWorld instance, and cannot be captured by the simulation.")
def execute(self):
output = None
# Transaction caching will only operate if there is a simulation and it is started
if self.simulation is None or self.simulation.status == Simulation.STATUS_STOPPED:
# Compute the function and return it, no caching, since the simulation is not started
output = self.function(*self.args, **self.kwargs)
elif self.simulation.status == Simulation.STATUS_STARTED:
# Compute the event hash
event_hash = self.simulation._function_call_hash(self.function_name, *self.args, **self.kwargs)
# Check if the event hash is in the cache
if self.simulation._is_transaction_event_cached(event_hash):
self.simulation.cache_hits += 1
# Restore the full state and return the cached output
logger.info(f"Skipping execution of {self.function_name} with args {self.args} and kwargs {self.kwargs} because it is already cached.")
self.simulation._skip_execution_with_cache()
state = self.simulation.cached_trace[self.simulation._execution_trace_position()][3] # state
self.simulation._decode_simulation_state(state)
# Output encoding/decoding is used to preserve references to TinyPerson and TinyWorld instances
# mainly. Scalar values (int, float, str, bool) and composite values (list, dict) are
# encoded/decoded as is.
encoded_output = self.simulation.cached_trace[self.simulation._execution_trace_position()][2] # output
output = self._decode_function_output(encoded_output)
else: # not cached
self.simulation.cache_misses += 1
# reentrant transactions are not cached, since what matters is the final result of
# the top-level transaction
if not self.simulation.is_under_transaction():
self.simulation.begin_transaction()
# immediately drop the cached trace suffix, since we are starting a new execution from this point on
self.simulation._drop_cached_trace_suffix()
# Compute the function, cache the result and return it
output = self.function(*self.args, **self.kwargs)
encoded_output = self._encode_function_output(output)
state = self.simulation._encode_simulation_state()
self.simulation._add_to_cache_trace(state, event_hash, encoded_output)
self.simulation._add_to_execution_trace(state, event_hash, encoded_output)
self.simulation.end_transaction()
else: # reentrant transactions are just run, but not cached
output = self.function(*self.args, **self.kwargs)
else:
raise ValueError(f"Simulation status is invalid at this point: {self.simulation.status}")
# Checkpoint if needed
if self.simulation is not None and self.simulation.auto_checkpoint:
self.simulation.checkpoint()
return output
def _encode_function_output(self, output) -> dict:
"""
Encodes the given function output.
"""
# local import to avoid circular dependencies
from tinytroupe.agent import TinyPerson
from tinytroupe.environment import TinyWorld
from tinytroupe.factory.tiny_factory import TinyFactory
# if the output is a TinyPerson, encode it
if output is None:
return None
elif isinstance(output, TinyPerson):
return {"type": "TinyPersonRef", "name": output.name}
# if it is a TinyWorld, encode it
elif isinstance(output, TinyWorld):
return {"type": "TinyWorldRef", "name": output.name}
# if it is a TinyFactory, encode it
elif isinstance(output, TinyFactory):
return {"type": "TinyFactoryRef", "name": output.name}
# if it is one of the types supported by JSON, encode it as is
elif isinstance(output, (int, float, str, bool, list, dict, tuple)):
return {"type": "JSON", "value": output}
# otherwise, raise an exception
else:
raise ValueError(f"Unsupported output type: {type(output)}")
def _decode_function_output(self, encoded_output: dict):
"""
Decodes the given encoded function output.
"""
# local import to avoid circular dependencies
from tinytroupe.agent import TinyPerson
from tinytroupe.environment import TinyWorld
from tinytroupe.factory.tiny_factory import TinyFactory
if encoded_output is None:
return None
elif encoded_output["type"] == "TinyPersonRef":
return TinyPerson.get_agent_by_name(encoded_output["name"])
elif encoded_output["type"] == "TinyWorldRef":
return TinyWorld.get_environment_by_name(encoded_output["name"])
elif encoded_output["type"] == "TinyFactoryRef":
return TinyFactory.get_factory_by_name(encoded_output["name"])
elif encoded_output["type"] == "JSON":
return encoded_output["value"]
else:
raise ValueError(f"Unsupported output type: {encoded_output['type']}")
def transactional(func):
"""
A helper decorator that makes a function simulation-transactional.
"""
def wrapper(*args, **kwargs):
obj_under_transaction = args[0]
simulation = current_simulation()
obj_sim_id = obj_under_transaction.simulation_id if hasattr(obj_under_transaction, 'simulation_id') else None
logger.debug(f"-----------------------------------------> Transaction: {func.__name__} with args {args[1:]} and kwargs {kwargs} under simulation {obj_sim_id}.")
transaction = Transaction(obj_under_transaction, simulation, func, *args, **kwargs)
result = transaction.execute()
return result
return wrapper
class SkipTransaction(Exception):
pass
class CacheOutOfSync(Exception):
"""
Raised when a cached and the corresponding freshly executed elements are out of sync.
"""
pass
class ExecutionCached(Exception):
"""
Raised when a proposed execution is already cached.
"""
pass
###################################################################################################
# Convenience functions
###################################################################################################
def reset():
"""
Resets the entire simulation control state.
"""
global _current_simulations, _current_simulation_id
_current_simulations = {"default": None}
# TODO Currently, only one simulation can be started at a time. In future versions, this should be
# changed to allow multiple simulations to be started at the same time, e.g., for fast
# analyses through parallelization.
_current_simulation_id = None
def _simulation(id="default"):
global _current_simulations
if _current_simulations[id] is None:
_current_simulations[id] = Simulation()
return _current_simulations[id]
def begin(cache_path=None, id="default", auto_checkpoint=False):
"""
Marks the start of the simulation being controlled.
"""
global _current_simulation_id
if _current_simulation_id is None:
_simulation(id).begin(cache_path, auto_checkpoint)
_current_simulation_id = id
else:
raise ValueError(f"Simulation is already started under id {_current_simulation_id}. Currently only one simulation can be started at a time.")
def end(id="default"):
"""
Marks the end of the simulation being controlled.
"""
global _current_simulation_id
_simulation(id).end()
_current_simulation_id = None
def checkpoint(id="default"):
"""
Saves current simulation state.
"""
_simulation(id).checkpoint()
def current_simulation():
"""
Returns the current simulation.
"""
global _current_simulation_id
if _current_simulation_id is not None:
return _simulation(_current_simulation_id)
else:
return None
def cache_hits(id="default"):
"""
Returns the number of cache hits.
"""
return _simulation(id).cache_hits
def cache_misses(id="default"):
"""
Returns the number of cache misses.
"""
return _simulation(id).cache_misses
reset() # initialize the control state