Spaces:
Runtime error
Runtime error
import pandas as pd | |
from tinytroupe.extraction import logger | |
from tinytroupe.agent import TinyPerson | |
class ResultsReducer: | |
def __init__(self): | |
self.results = {} | |
self.rules = {} | |
def add_reduction_rule(self, trigger: str, func: callable): | |
if trigger in self.rules: | |
raise Exception(f"Rule for {trigger} already exists.") | |
self.rules[trigger] = func | |
def reduce_agent(self, agent: TinyPerson) -> list: | |
reduction = [] | |
for message in agent.episodic_memory.retrieve_all(): | |
if message['role'] == 'system': | |
continue # doing nothing for `system` role yet at least | |
elif message['role'] == 'user': | |
# User role is related to stimuli only | |
stimulus_type = message['content']['stimuli'][0]['type'] | |
stimulus_content = message['content']['stimuli'][0]['content'] | |
stimulus_source = message['content']['stimuli'][0]['source'] | |
stimulus_timestamp = message['simulation_timestamp'] | |
if stimulus_type in self.rules: | |
extracted = self.rules[stimulus_type](focus_agent=agent, source_agent=TinyPerson.get_agent_by_name(stimulus_source), target_agent=agent, kind='stimulus', event=stimulus_type, content=stimulus_content, timestamp=stimulus_timestamp) | |
if extracted is not None: | |
reduction.append(extracted) | |
elif message['role'] == 'assistant': | |
# Assistant role is related to actions only | |
if 'action' in message['content']: | |
action_type = message['content']['action']['type'] | |
action_content = message['content']['action']['content'] | |
action_target = message['content']['action']['target'] | |
action_timestamp = message['simulation_timestamp'] | |
if action_type in self.rules: | |
extracted = self.rules[action_type](focus_agent=agent, source_agent=agent, target_agent=TinyPerson.get_agent_by_name(action_target), kind='action', event=action_type, content=action_content, timestamp=action_timestamp) | |
if extracted is not None: | |
reduction.append(extracted) | |
return reduction | |
def reduce_agent_to_dataframe(self, agent: TinyPerson, column_names: list=None) -> pd.DataFrame: | |
reduction = self.reduce_agent(agent) | |
return pd.DataFrame(reduction, columns=column_names) | |