Spaces:
Runtime error
Runtime error
import streamlit as st | |
import joblib | |
pipe = joblib.load(".model/xgb_pipeline.pkl") | |
st.set_page_config(page_title="Churn Classification", page_icon="π") | |
st.title("π Churn Classification") | |
st.markdown("Enter the details to correctly identify if a person will churn or not.") | |
st.markdown("> This app is a churn prediction model. This project automates training, evaluation, and deployment of models to Hugging Face using GitHub Actions.") | |
with st.form("churn_form"): | |
BusinessTravel = st.radio("Business Travel Frequency", ["Travel_Rarely", "Travel_Frequently", "Non-Travel"]) | |
Department = st.radio("Department", ["Research & Development", "Sales", "Human Resources"]) | |
EducationField = st.radio("Education Field", ["Life Sciences", "Medical", "Marketing", "Technical Degree", "Other"]) | |
JobLevel = st.slider("Level of Job", 1, 5, step=1) | |
JobRole = st.radio("Job Role", [ | |
"Sales Executive", "Research Scientist", "Laboratory Technician", "Manufacturing Director", | |
"Healthcare Representative", "Manager", "Sales Representative", "Research Director", "Human Resources" | |
]) | |
MaritalStatus = st.radio("Marital Status", ["Married", "Single", "Divorced"]) | |
OverTime = st.radio("OverTime", ["Yes", "No"]) | |
StockOptionLevel = st.slider("Stock Option Level", 0, 3, step=1) | |
submitted = st.form_submit_button("Predict") | |
if submitted: | |
features = [BusinessTravel, Department, EducationField, JobLevel, JobRole, MaritalStatus, OverTime, StockOptionLevel] | |
predicted_churn_result = pipe.predict([features])[0].map({0:"No",1:"Yes"}) | |
st.success(f"π― **Predicted Result**: {predicted_churn_result}") | |