Spaces:
Runtime error
Runtime error
import pandas as pd | |
import numpy as np | |
from sklearn.model_selection import train_test_split | |
import joblib | |
from sklearn.metrics import f1_score | |
df = pd.read_csv("./data/hr_churn_data.csv",usecols=['JobRole', 'MaritalStatus', 'OverTime', 'EducationField','BusinessTravel','JobLevel','StockOptionLevel', 'Department', 'Attrition']) | |
df['Attrition'] = df['Attrition'].map({'No': 0, 'Yes': 1}) | |
X = df.drop("Attrition", axis=1) | |
y = df["Attrition"] | |
X_train, X_test, y_train, y_test = train_test_split( | |
X, y, test_size=0.2, random_state=125) | |
model = joblib.load("./model.pkl") | |
def test_f1(): | |
preds = model.predict(X_test) | |
f1 = f1_score(y_test, preds, average="macro") | |
assert f1 > 0.60, "f1_score is below acceptable threshold" | |
def test_missing_values(): | |
assert df.isna().sum().sum() == 0, "Dataset contains missing values" | |
def test_pipeline_execution(): | |
assert len(X_train) > 0, "Training data is empty!" | |
assert len(y_train) > 0, "Labels are empty!" |