File size: 2,260 Bytes
b7484d7
 
58a1c58
a5177da
b7484d7
 
 
8bed2ce
f908316
b7484d7
 
 
2d019a6
 
b7484d7
 
 
 
 
 
eeebb29
b7484d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
071a451
b7484d7
 
 
071a451
b7484d7
 
 
eeebb29
 
c01b75e
eeebb29
 
c01b75e
01f0b80
 
 
 
 
eeebb29
b7484d7
2d019a6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import os
import uuid
import json
from flask import Flask, request, jsonify, Response
import pytesseract
from pdf2image import convert_from_bytes
from flask_cors import CORS
from lib import ocr_2 as ocr
from lib import llm_3_deepinfra as llm

os.environ['TESSDATA_PREFIX'] = '/usr/share/tesseract-ocr/5/tessdata'



app = Flask(__name__)
CORS(app)
UPLOAD_FOLDER = './tmp'
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER

# Endpoint for uploading PDF and extracting text
@app.route('/recognize', methods=['POST'])
def upload_file():
    # Check if the post request has the file part
    if 'file' not in request.files:
        return jsonify({'error': 'No file part'})

    file = request.files['file']

    # Check if the file is a PDF
    if file.filename == '':
        return jsonify({'error': 'No selected file'})
    if file and file.filename.endswith('.pdf'):
        # Convert PDF to images
        # images = convert_from_bytes(file.read())
        filename = str(uuid.uuid4()) + '.pdf'

        # Save the file to the temporary upload directory
        file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename))

        # Construct and return the path where the file is saved
        temp_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
        
        text = ''
        # for img in images:
        #     # Perform OCR on each page
        #     text += pytesseract.image_to_string(img, lang='rus')
            
            
        docs_info = ocr.processSingleFile(temp_path) 
            
            
        os.remove(temp_path)
        return Response(json.dumps(docs_info, sort_keys=False, ensure_ascii=False), content_type='application/json; charset=utf-8')
    else:
        return jsonify({'error': 'File must be a PDF'})

# Endpoint for uploading PDF and extracting text
@app.route('/analize', methods=['POST'])
async def analize():
    # Get the text data from the request
    text_data = request.json.get('text')
    app_info = await llm.getApplicationInfo(text_data)
    result = {
        "application": app_info,
        "debug": {}
    }
    return Response(json.dumps(result, sort_keys=False, ensure_ascii=False), content_type='application/json; charset=utf-8')
    
if __name__ == '__main__':
    app.run(debug=False)