File size: 8,293 Bytes
eeebb29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
from PIL import Image, ImageFilter
import cv2
import pytesseract
from pytesseract import Output
from os import listdir
from os.path import isfile, join
import numpy as np
import json
import matplotlib.pyplot as plt
from pdf2image import convert_from_path
from matplotlib import pyplot as plt
import re
def processFiles(pdfs, verbose = False) :
images_per_pdf_2d = [convert_from_path(file) for file in pdfs]
images_per_pdf = []
docfilenames = []
pagenames = []
fileindices = []
for i in range(len(images_per_pdf_2d)) :
docfilenames.append(pdfs[i][:-4])
pageindices = []
for j in range(len(images_per_pdf_2d[i])) :
images_per_pdf.append(images_per_pdf_2d[i][j])
pagenames.append(pdfs[i][:-4] + '_page_' + str(j))
pageindices.append(len(pagenames) - 1)
# print(i, j, len(pagenames) - 1, pagenames[-1])
fileindices.append(pageindices)
gray_images_per_pdf_cropped = []
for i in range(len(images_per_pdf)) :
image = images_per_pdf[i]
crop = image.convert("L").crop((
750, 150, # left top point
1654, 850 # right bottom point
))
gray_images_per_pdf_cropped.append(crop)
texts = [pytesseract.image_to_string(image, lang='rus') for image in gray_images_per_pdf_cropped]
fulltexts = [pytesseract.image_to_string(image, lang='rus') for image in images_per_pdf]
cropped_images = gray_images_per_pdf_cropped
init_size = cropped_images[0].size
thresh_imgs = [
image.resize(
(init_size[0] //4, init_size[1] // 4)
).point(
lambda x: 0 if x < 220 else 255
).filter(
ImageFilter.MedianFilter(5)
).filter(
ImageFilter.MinFilter(15) #15
) for i,(name,image) in enumerate(zip(pagenames, cropped_images))
]
masks = thresh_imgs
masks_arr = [np.array(img) for img in masks]
mask_shape = masks_arr[0].shape
str_size = 7
masks = []
masks_bw = []
for name, mask in zip(pagenames, masks_arr):
cleaned_mask = mask.copy()
for iter in range(mask_shape[0] // str_size):
temp_mean = int(cleaned_mask[iter*str_size : iter*str_size + str_size, :].mean())
if (temp_mean < 49) or (temp_mean > 160):
cleaned_mask[iter*str_size : iter*str_size + str_size, :] = 255
vertical_threshold = 200
for i in range(mask_shape[1] // str_size + 1):
if (i*str_size + str_size) > mask_shape[1]:
temp_mean_vertical = int(cleaned_mask[:, i*str_size : mask_shape[1]].mean())
if temp_mean_vertical > vertical_threshold:
cleaned_mask[:, i*str_size : mask_shape[1]] = 255
else:
temp_mean_vertical = int(cleaned_mask[:, i*str_size : i*str_size + str_size].mean())
if temp_mean_vertical > vertical_threshold:
cleaned_mask[:, i*str_size : i*str_size + str_size] = 255
image = Image.fromarray(cleaned_mask).filter(
ImageFilter.MedianFilter(13)
).filter(
ImageFilter.MinFilter(25) #15
)
masks.append(image)
masks_bw.append(image.convert('1'))
masks_bw_arr = [np.array(img) for img in masks_bw]
# check which pages have address box: if there is no address box the mask is empty
addressexists = [bool((~mask_bw).sum()) for mask_bw in masks_bw_arr]
# this is a list of CB names that may be used in address
CBnames = [
'цб рф',
'центральный банк',
'центрального банка',
'банк россии',
'банка россии',
]
# check which pages have address box addressed to CB
toCB = []
for i in range(len(addressexists)) :
iftoCB = False
for j in range(len(CBnames)) :
if addressexists[i] and CBnames[j] in texts[i].lower() :
iftoCB = True
break
toCB.append(iftoCB)
# build 3-level list: file -> doc -> page
docindices = []
doctypes = []
for i in range(len(fileindices)) :
docs = []
types = []
pages = []
doctype = False
for j in range(len(fileindices[i])) :
index = fileindices[i][j]
ifaddress = addressexists[index]
iftoCB = toCB[index]
if ifaddress :
if len(pages) > 0 :
docs.append(pages)
types.append(doctype)
pages = []
doctype = iftoCB
pages.append(index)
docs.append(pages)
types.append(doctype)
docindices.append(docs)
doctypes.append(types)
cropped = cropped_images
orig_size = cropped[0].size
masks = [mask.convert('L').resize((orig_size)) for mask in masks]
if verbose :
for i in range(len(masks)) :
img = np.array(masks[i])
out = np.array(cropped[i])
bw = cv2.inRange(img, 0, 12)
contours, hierarchy = cv2.findContours(bw, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
aaa = cv2.drawContours(out, contours, -1, (0, 255, 0), 5, cv2.LINE_AA, hierarchy, 1)
print()
print(pagenames[i])
print('Address exists :', addressexists[i])
print('To CB :', toCB[i])
# if addressflags[i] :
# if toCB[i] :
# print('text :', texts[i])
plt.imshow(Image.fromarray(aaa))
plt.show()
# print recognized text with marks: file - > doc # and doc type -> page number and text
docs_info = []
for i in range(len(docindices)) :
docs = []
if verbose :
print('File =', docfilenames[i])
for j in range(len(docindices[i])) :
doc = {}
doctype = 'Сопроводительное письмо'
if doctypes[i][j] :
doctype = 'Обращение'
doc['Тип документа'] = doctype
text = ''
if verbose :
print('Doc =', j, 'Type =', doctype)
for k in range(len(docindices[i][j])) :
index = docindices[i][j][k]
text += fulltexts[index]
if verbose :
print('Page =', pagenames[index])
print(fulltexts[index])
print('--- end of page ---')
print()
text = re.sub(r'\n +', r'\n', text)
text = re.sub(r'\n+', r'\n', text)
doc['Текст документа'] = text
docs.append(doc)
docs_info.append(docs)
for i in range(len(docindices)) :
for j in range(len(docindices[i])) :
for k in range(len(docindices[i][j])) :
index = docindices[i][j][k]
if toCB[index] :
if verbose :
print('Page =', pagenames[index])
print(texts[index].strip())
print('------------------------')
print()
return docs_info
def processSingleFile(file) :
return processFiles([file])
# docs_info =
# [
# {
# 'Имя поля' : 'Текст поля',
# ...
# },
# ...
# ]
# то есть это массив документов, содержащихся в файле, для каждого документа задан словарь 'Имя поля' : 'Текст поля' (сейчас там 2 поля для каждого документа) |