Spaces:
Sleeping
Sleeping
File size: 12,529 Bytes
a0358cb c965d7c a0358cb 32acd33 c965d7c a0358cb c965d7c 32acd33 a0358cb c965d7c a0358cb c965d7c a0358cb c965d7c a0358cb c965d7c a0358cb c965d7c a0358cb c965d7c a0358cb c965d7c a0358cb c965d7c a0358cb c965d7c a0358cb c965d7c a0358cb c965d7c a0358cb c965d7c a0358cb c965d7c a0358cb c965d7c a0358cb c965d7c a0358cb c965d7c a0358cb c965d7c a0358cb c965d7c a0358cb c965d7c 32acd33 a0358cb c965d7c a0358cb c965d7c a0358cb c965d7c a0358cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
"""
debug_wrapper.py - Debug Monitoring Module
Injects debugging capabilities without modifying core modules
"""
import os
import time
import json
import numpy as np
import cv2
from collections import deque, Counter
from pathlib import Path
from typing import Any, Dict, List, Optional
import traceback
# Disable Gradio analytics (avoids pandas OptionError bug)
try:
import gradio as gr
gr.analytics_enabled = False
except Exception:
pass
# Create debug directory
DEBUG_DIR = Path("debug_samples")
DEBUG_DIR.mkdir(exist_ok=True)
class DebugMonitor:
"""Centralized debug monitoring and logging"""
def __init__(self, keep_last_logs: int = 200):
self.keep_last_logs = keep_last_logs
self.reset()
def reset(self):
"""Reset all debug state"""
self.start_time = time.time()
self.frame_count = 0
self.counters = Counter()
self.similarities = deque(maxlen=2000)
self.recent_logs = deque(maxlen=self.keep_last_logs)
self.bad_samples = []
self.match_records = []
self.live_stats = {} # Live statistics for display
def log(self, msg: str, level: str = "INFO"):
"""Add log entry with timestamp"""
ts = time.strftime("%H:%M:%S")
entry = f"[{ts}] [{level}] {msg}"
print(entry, flush=True)
self.recent_logs.append(entry)
def save_bad_sample(self, img_bgr: np.ndarray, similarity: float, dog_id: int, track_id: int) -> Optional[str]:
"""Save problematic detection sample"""
try:
idx = len(self.bad_samples) + 1
fname = DEBUG_DIR / f"bad_sample_{idx:04d}_sim{similarity:.2f}_dog{dog_id}.jpg"
cv2.imwrite(str(fname), img_bgr)
self.bad_samples.append({
'file': str(fname),
'similarity': similarity,
'dog_id': dog_id,
'track_id': track_id,
'timestamp': time.time()
})
self.log(f"Saved bad sample #{idx}: sim={similarity:.3f}, dog_id={dog_id}, track={track_id}", "WARNING")
return str(fname)
except Exception as e:
self.log(f"Error saving bad sample: {e}", "ERROR")
return None
def update_live_stats(self):
"""Update live statistics for display"""
total_matches = self.counters['reid_matches']
total_attempts = self.counters['reid_attempts'] or 1
self.live_stats = {
'frame': self.frame_count,
'dogs_detected': len(set(r['dog_id'] for r in self.match_records if r['dog_id'] > 0)),
'active_tracks': self.counters['active_tracks'],
'match_rate': total_matches / total_attempts,
'avg_similarity': np.mean(self.similarities) if self.similarities else 0.0,
'fps': self.frame_count / (time.time() - self.start_time + 1)
}
def get_debug_output(self, lines: int = 10) -> str:
"""Get recent log lines for UI display"""
return "\n".join(list(self.recent_logs)[-lines:])
def get_debug_summary(self) -> str:
"""Get comprehensive debug summary"""
c = self.counters
total_matches = c['reid_matches']
total_attempts = c['reid_attempts'] or 1
match_rate = total_matches / total_attempts
avg_sim = np.mean(self.similarities) if self.similarities else 0.0
elapsed = time.time() - self.start_time
# Get unique dogs
unique_dogs = len(set(r['dog_id'] for r in self.match_records if r['dog_id'] > 0))
summary = f"""π Debug Summary
ββββββββββββββββββββββ
Frames: {self.frame_count} | Time: {elapsed:.1f}s | FPS: {self.frame_count/(elapsed+1):.1f}
Detections: {c['detections']} | Tracks: {c['tracks_created']} | Confirmed: {c['tracks_confirmed']}
Unique Dogs: {unique_dogs} | Active Tracks: {c['active_tracks']}
ReID Attempts: {total_attempts} | Matches: {total_matches} ({match_rate:.1%})
Avg Similarity: {avg_sim:.3f} | Feature Fails: {c['feature_fail']}
Bad Samples Saved: {len(self.bad_samples)}"""
return summary
def save_debug_report(self, filepath: str = "debug_report.json"):
"""Save comprehensive debug report"""
try:
report = {
'timestamp': time.strftime("%Y-%m-%d %H:%M:%S"),
'frames_processed': self.frame_count,
'elapsed_time': time.time() - self.start_time,
'counters': dict(self.counters),
'avg_similarity': float(np.mean(self.similarities)) if self.similarities else 0.0,
'similarity_distribution': {
'min': float(min(self.similarities)) if self.similarities else 0,
'max': float(max(self.similarities)) if self.similarities else 0,
'percentiles': {
'25%': float(np.percentile(list(self.similarities), 25)) if self.similarities else 0,
'50%': float(np.percentile(list(self.similarities), 50)) if self.similarities else 0,
'75%': float(np.percentile(list(self.similarities), 75)) if self.similarities else 0,
'90%': float(np.percentile(list(self.similarities), 90)) if self.similarities else 0
}
},
'bad_samples': self.bad_samples[:20],
'match_records_last': self.match_records[-50:]
}
with open(filepath, "w") as f:
json.dump(report, f, indent=2, default=str)
self.log(f"Saved debug report to {filepath}", "INFO")
except Exception as e:
self.log(f"Failed to save debug report: {e}", "ERROR")
def add_debugging(app: Any) -> Any:
"""
Inject debug monitoring into DogMonitoringApp
Args:
app: DogMonitoringApp instance
Returns:
Modified app with debug capabilities
"""
# Create debug monitor
app.debug_monitor = DebugMonitor()
# ============== Wrap detector.detect ==============
if hasattr(app, "detector") and hasattr(app.detector, "detect"):
original_detect = app.detector.detect
def wrapped_detect(frame, *args, **kwargs):
try:
detections = original_detect(frame, *args, **kwargs)
n = len(detections) if detections else 0
app.debug_monitor.counters['detections'] += n
if n > 0:
app.debug_monitor.log(f"Detected {n} dogs in frame {app.debug_monitor.frame_count}", "DEBUG")
return detections
except Exception as e:
app.debug_monitor.log(f"Detection error: {e}", "ERROR")
return []
app.detector.detect = wrapped_detect
app.debug_monitor.log("Injected debug wrapper for detector.detect()")
# ============== Wrap tracker.update ==============
if hasattr(app, "tracker") and hasattr(app.tracker, "update"):
original_tracker_update = app.tracker.update
def wrapped_tracker_update(detections, *args, **kwargs):
try:
before_ids = set([t.track_id for t in getattr(app.tracker, "tracks", [])])
tracks = original_tracker_update(detections, *args, **kwargs)
after_ids = set([t.track_id for t in getattr(app.tracker, "tracks", [])])
new_ids = after_ids - before_ids
app.debug_monitor.counters['tracks_created'] += len(new_ids)
app.debug_monitor.counters['tracks_confirmed'] += len(tracks)
app.debug_monitor.counters['active_tracks'] = len(tracks)
if new_ids:
app.debug_monitor.log(f"Created {len(new_ids)} new tracks", "DEBUG")
return tracks
except Exception as e:
app.debug_monitor.log(f"Tracker error: {e}", "ERROR")
return []
app.tracker.update = wrapped_tracker_update
app.debug_monitor.log("Injected debug wrapper for tracker.update()")
# ============== Wrap reid.match_or_register ==============
if hasattr(app, "reid") and hasattr(app.reid, "match_or_register"):
original_match = app.reid.match_or_register
def wrapped_match(track, *args, **kwargs):
app.debug_monitor.counters['reid_attempts'] += 1
try:
dog_id, confidence = original_match(track, *args, **kwargs)
dog_id = int(dog_id)
sim = float(confidence)
# Record similarity
app.debug_monitor.similarities.append(sim)
app.debug_monitor.match_records.append({
'sim': sim,
'dog_id': dog_id,
'track_id': getattr(track, 'track_id', None),
'frame': app.debug_monitor.frame_count
})
# Check for problematic matches
threshold = getattr(app.reid, 'similarity_threshold', getattr(app, 'reid_threshold', 0.7))
# Save bad samples (very low similarity)
if sim < (threshold - 0.2) and track.detections:
latest_crop = None
for det in reversed(track.detections):
if det.image_crop is not None:
latest_crop = det.image_crop
break
if latest_crop is not None:
app.debug_monitor.save_bad_sample(
latest_crop, sim, dog_id,
getattr(track, 'track_id', 0)
)
# Count match/miss
if sim >= threshold:
app.debug_monitor.counters['reid_matches'] += 1
else:
app.debug_monitor.counters['reid_misses'] += 1
return dog_id, sim
except Exception as e:
app.debug_monitor.log(f"ReID error: {traceback.format_exc()}", "ERROR")
app.debug_monitor.counters['feature_fail'] += 1
return 0, 0.0
app.reid.match_or_register = wrapped_match
app.debug_monitor.log("Injected debug wrapper for reid.match_or_register()")
# ============== Wrap main process_video ==============
if hasattr(app, "process_video"):
original_process_video = app.process_video
def wrapped_process_video(video_path: str, progress=None):
# Reset debug state
app.debug_monitor.reset()
app.debug_monitor.log(f"Starting video processing: {video_path}")
# Wrap progress callback to count frames
if progress:
original_progress = progress
def wrapped_progress(val, desc=None):
app.debug_monitor.frame_count = int(val * 100) # Approximate frame count
app.debug_monitor.update_live_stats()
return original_progress(val, desc)
progress = wrapped_progress
try:
result = original_process_video(video_path, progress)
# Save debug report
app.debug_monitor.save_debug_report()
app.debug_monitor.log("Video processing completed successfully")
return result
except Exception as e:
app.debug_monitor.log(f"Process video error: {traceback.format_exc()}", "ERROR")
raise
app.process_video = wrapped_process_video
app.debug_monitor.log("Injected debug wrapper for process_video()")
# ============== Add convenience methods ==============
app.get_debug_output = lambda lines=10: app.debug_monitor.get_debug_output(lines)
app.get_debug_summary = lambda: app.debug_monitor.get_debug_summary()
app.get_live_stats = lambda: app.debug_monitor.live_stats
app.debug_monitor.log("β Debug monitoring system initialized")
return app |