Spaces:
Sleeping
Sleeping
File size: 14,485 Bytes
1b01b81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
"""
reid_adaptive.py - Enhanced ReID with Adaptive Thresholding
Automatically adjusts similarity threshold based on data distribution
"""
import numpy as np
from collections import deque
from typing import List, Dict, Tuple, Optional
import scipy.stats as stats
class AdaptiveThreshold:
"""
Manages adaptive similarity threshold using statistical methods
"""
def __init__(self,
initial_threshold: float = 0.7,
window_size: int = 100,
adaptation_rate: float = 0.1):
"""
Args:
initial_threshold: Starting threshold value
window_size: Number of recent similarities to consider
adaptation_rate: How quickly to adapt (0-1)
"""
self.base_threshold = initial_threshold
self.current_threshold = initial_threshold
self.adaptation_rate = adaptation_rate
# Store recent similarity scores
self.similarity_history = deque(maxlen=window_size)
self.match_history = deque(maxlen=window_size) # True/False outcomes
# Statistics tracking
self.threshold_history = deque(maxlen=1000)
self.threshold_history.append(initial_threshold)
def update_and_get_threshold(self,
new_similarity: float,
was_correct_match: Optional[bool] = None) -> float:
"""
Update threshold based on new data point
Args:
new_similarity: Latest similarity score
was_correct_match: Feedback on whether last match was correct (if known)
Returns:
Adaptive threshold for this decision
"""
# Add to history
self.similarity_history.append(new_similarity)
if was_correct_match is not None:
self.match_history.append(was_correct_match)
# Need minimum samples before adapting
if len(self.similarity_history) < 20:
return self.current_threshold
# Calculate adaptive threshold using multiple strategies
thresholds = []
weights = []
# Strategy 1: Statistical threshold (mean - k*std)
stat_threshold = self._statistical_threshold()
if stat_threshold:
thresholds.append(stat_threshold)
weights.append(0.4)
# Strategy 2: Distribution gap threshold
gap_threshold = self._gap_threshold()
if gap_threshold:
thresholds.append(gap_threshold)
weights.append(0.3)
# Strategy 3: Performance-based adjustment
perf_threshold = self._performance_threshold()
if perf_threshold:
thresholds.append(perf_threshold)
weights.append(0.3)
# Combine strategies
if thresholds:
weighted_threshold = np.average(thresholds, weights=weights[:len(thresholds)])
# Smooth adaptation
self.current_threshold = (
self.current_threshold * (1 - self.adaptation_rate) +
weighted_threshold * self.adaptation_rate
)
# Keep within reasonable bounds
self.current_threshold = np.clip(self.current_threshold, 0.4, 0.9)
self.threshold_history.append(self.current_threshold)
return self.current_threshold
def _statistical_threshold(self) -> Optional[float]:
"""
Calculate threshold based on statistical distribution
Uses Otsu's method variant for bimodal distribution
"""
if len(self.similarity_history) < 20:
return None
similarities = np.array(self.similarity_history)
# Check for bimodal distribution (matches vs non-matches)
hist, bins = np.histogram(similarities, bins=20)
# Find valley between peaks using gradient
if len(hist) > 5:
gradient = np.diff(hist)
# Look for sign change from negative to positive (valley)
valleys = []
for i in range(1, len(gradient)-1):
if gradient[i-1] < 0 and gradient[i] > 0:
valleys.append(bins[i+1])
if valleys:
# Use the most prominent valley
return float(np.median(valleys))
# Fallback: use mean - 1.5*std
mean = np.mean(similarities)
std = np.std(similarities)
return max(0.4, mean - 1.5 * std)
def _gap_threshold(self) -> Optional[float]:
"""
Find natural gap in similarity scores
"""
if len(self.similarity_history) < 30:
return None
similarities = sorted(self.similarity_history)
# Find largest gap
gaps = []
for i in range(1, len(similarities)):
gap_size = similarities[i] - similarities[i-1]
gap_position = (similarities[i] + similarities[i-1]) / 2
gaps.append((gap_size, gap_position))
if gaps:
# Find significant gaps (> 90th percentile)
gap_sizes = [g[0] for g in gaps]
threshold_gap_size = np.percentile(gap_sizes, 90)
significant_gaps = [g[1] for g in gaps if g[0] > threshold_gap_size]
if significant_gaps:
# Use gap closest to middle of range
mid_range = (max(similarities) + min(similarities)) / 2
best_gap = min(significant_gaps,
key=lambda x: abs(x - mid_range))
return float(best_gap)
return None
def _performance_threshold(self) -> Optional[float]:
"""
Adjust based on match accuracy feedback
"""
if len(self.match_history) < 10:
return None
# Calculate false positive and false negative rates
recent_matches = list(self.match_history)[-50:]
accuracy = sum(recent_matches) / len(recent_matches)
# Adjust threshold based on accuracy
if accuracy < 0.7: # Too many errors
# Threshold might be too loose or too strict
# Analyze error types by comparing to current threshold
recent_sims = list(self.similarity_history)[-50:]
high_sim_errors = sum(1 for i, correct in enumerate(recent_matches)
if not correct and recent_sims[i] > self.current_threshold)
low_sim_errors = sum(1 for i, correct in enumerate(recent_matches)
if not correct and recent_sims[i] <= self.current_threshold)
if high_sim_errors > low_sim_errors:
# Too many false positives - increase threshold
return self.current_threshold + 0.05
else:
# Too many false negatives - decrease threshold
return self.current_threshold - 0.05
return self.current_threshold
class SimpleReIDAdaptive:
"""
Enhanced ReID with adaptive thresholding
Drop-in replacement for SimpleReID
"""
def __init__(self,
similarity_threshold: float = 0.7,
device: str = 'cuda',
use_adaptive: bool = True):
"""
Initialize ReID with optional adaptive thresholding
Args:
similarity_threshold: Initial/fallback threshold
device: 'cuda' or 'cpu'
use_adaptive: Whether to use adaptive thresholding
"""
# Initialize base ReID (same as before)
self.device = device if torch.cuda.is_available() else 'cpu'
self.base_threshold = similarity_threshold
self.use_adaptive = use_adaptive
# ... (rest of initialization same as SimpleReID)
# Adaptive threshold manager
self.adaptive_threshold = AdaptiveThreshold(
initial_threshold=similarity_threshold
)
# Per-dog adaptive thresholds (optional)
self.dog_thresholds: Dict[int, AdaptiveThreshold] = {}
def match_or_register(self, track: Track) -> Tuple[int, float]:
"""
Match with adaptive threshold
"""
if not track.detections:
return 0, 0.0
# Extract features (same as before)
features = self.extract_features(latest_detection.image_crop)
if features is None:
return 0, 0.0
# Calculate similarities with all dogs
all_similarities = []
dog_similarities = {}
for dog_id, stored_features in self.dog_database.items():
similarities = []
for stored_feat in stored_features[-5:]:
sim = cosine_similarity(
features.reshape(1, -1),
stored_feat.reshape(1, -1)
)[0, 0]
similarities.append(sim)
avg_similarity = np.mean(similarities) if similarities else 0.0
dog_similarities[dog_id] = avg_similarity
all_similarities.extend(similarities)
# Get adaptive threshold
if self.use_adaptive and all_similarities:
# Use global adaptive threshold
max_sim = max(dog_similarities.values()) if dog_similarities else 0.0
threshold = self.adaptive_threshold.update_and_get_threshold(max_sim)
# Optional: Per-dog thresholds for known difficult cases
best_dog_id = max(dog_similarities, key=dog_similarities.get) if dog_similarities else None
if best_dog_id and best_dog_id in self.dog_thresholds:
dog_specific_threshold = self.dog_thresholds[best_dog_id].update_and_get_threshold(
dog_similarities[best_dog_id]
)
# Use more conservative threshold
threshold = max(threshold, dog_specific_threshold)
else:
threshold = self.base_threshold
# Find best match
if dog_similarities:
best_dog_id = max(dog_similarities, key=dog_similarities.get)
best_similarity = dog_similarities[best_dog_id]
if best_similarity >= threshold:
# Update existing dog
self.dog_database[best_dog_id].append(features)
if len(self.dog_database[best_dog_id]) > 20:
self.dog_database[best_dog_id] = self.dog_database[best_dog_id][-20:]
self.dog_images[best_dog_id] = latest_detection.image_crop
# Store decision for learning
self._record_match_decision(best_dog_id, best_similarity, True)
return best_dog_id, best_similarity
# Register new dog
new_dog_id = self.next_dog_id
self.next_dog_id += 1
self.dog_database[new_dog_id] = [features]
self.dog_images[new_dog_id] = latest_detection.image_crop
# Initialize per-dog threshold if using adaptive
if self.use_adaptive:
self.dog_thresholds[new_dog_id] = AdaptiveThreshold(
initial_threshold=self.adaptive_threshold.current_threshold
)
return new_dog_id, 1.0
def _record_match_decision(self, dog_id: int, similarity: float, was_match: bool):
"""
Record matching decision for learning
Can be enhanced with user feedback
"""
# This could be connected to user corrections
# For now, we assume high-confidence matches are correct
was_correct = similarity > 0.85 if was_match else similarity < 0.5
# Update global threshold learning
if self.use_adaptive:
self.adaptive_threshold.update_and_get_threshold(
similarity, was_correct
)
def get_threshold_info(self) -> Dict:
"""
Get current threshold information for debugging
"""
info = {
'current_threshold': self.adaptive_threshold.current_threshold,
'base_threshold': self.base_threshold,
'use_adaptive': self.use_adaptive,
'threshold_history': list(self.adaptive_threshold.threshold_history)[-20:],
'similarity_stats': {
'mean': np.mean(self.adaptive_threshold.similarity_history) if self.adaptive_threshold.similarity_history else 0,
'std': np.std(self.adaptive_threshold.similarity_history) if self.adaptive_threshold.similarity_history else 0,
'min': min(self.adaptive_threshold.similarity_history) if self.adaptive_threshold.similarity_history else 0,
'max': max(self.adaptive_threshold.similarity_history) if self.adaptive_threshold.similarity_history else 0
}
}
return info
# Integration with Gradio UI
def create_adaptive_controls(app):
"""
Add adaptive threshold controls to Gradio interface
"""
import gradio as gr
with gr.Column():
gr.Markdown("### Adaptive Threshold Settings")
adaptive_toggle = gr.Checkbox(
label="Enable Adaptive Threshold",
value=True,
info="Automatically adjust threshold based on data"
)
adaptation_rate = gr.Slider(
minimum=0.01,
maximum=0.5,
value=0.1,
step=0.01,
label="Adaptation Rate",
info="How quickly threshold adapts (lower = more stable)"
)
window_size = gr.Slider(
minimum=20,
maximum=500,
value=100,
step=10,
label="History Window",
info="Number of recent matches to consider"
)
# Threshold visualization
threshold_plot = gr.LinePlot(
label="Threshold History",
x="Sample",
y="Threshold",
height=200
)
# Stats display
threshold_info = gr.JSON(
label="Threshold Statistics"
)
return adaptive_toggle, adaptation_rate, window_size, threshold_plot, threshold_info |