Spaces:
Sleeping
Sleeping
File size: 34,554 Bytes
67fefa1 9914bad 67fefa1 8344942 67fefa1 11582fb 67fefa1 11582fb 8344942 67fefa1 a22aaed 67fefa1 a22aaed 67fefa1 a22aaed 67fefa1 a22aaed 67fefa1 a22aaed 67fefa1 a22aaed 67fefa1 a22aaed 67fefa1 a22aaed 67fefa1 a22aaed 67fefa1 a22aaed 67fefa1 a22aaed 67fefa1 a22aaed 67fefa1 a22aaed 67fefa1 a22aaed 0f51f8c a22aaed 67fefa1 a22aaed 67fefa1 a22aaed 67fefa1 a22aaed 67fefa1 a22aaed 67fefa1 5449533 67fefa1 5449533 67fefa1 6e605a5 67fefa1 6e605a5 67fefa1 6e605a5 67fefa1 6e605a5 67fefa1 6e605a5 67fefa1 6e605a5 67fefa1 6e605a5 67fefa1 6e605a5 67fefa1 6e605a5 67fefa1 6e605a5 67fefa1 6e605a5 67fefa1 5449533 11582fb 67fefa1 4e6751e 5449533 4e6751e 4ae7251 5449533 4e6751e 959d8e5 5449533 4e6751e 4ae7251 5449533 67fefa1 5449533 4e6751e 5449533 67fefa1 4e6751e 67fefa1 4e6751e 67fefa1 4e6751e 67fefa1 4e6751e 67fefa1 4e6751e 67fefa1 4e6751e 67fefa1 4e6751e 67fefa1 5449533 4e6751e 5449533 67fefa1 5449533 67fefa1 4e6751e 67fefa1 4e6751e 67fefa1 5449533 4e6751e 5449533 67fefa1 4e6751e 67fefa1 4e6751e 67fefa1 5449533 67fefa1 5449533 67fefa1 6e605a5 67fefa1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 |
"""
Simplified Dog Tracking for Training Dataset Collection
- Process video with adjustable threshold
- Temporary storage with discard option
- Manual validation with checkbox selection per image
- Export to folder structure for fine-tuning
- Download to laptop as ZIP
- Automatic HuggingFace backup/restore
- Visualization video with colored tracking boxes
"""
import os
os.environ["OMP_NUM_THREADS"] = "1"
import zipfile
import tempfile
import gradio as gr
import cv2
import numpy as np
import torch
from typing import Dict, List
import gc
import base64
from io import BytesIO
from PIL import Image
from pathlib import Path
import json
from datetime import datetime
from detection import DogDetector
from tracking import DeepSORTTracker
from reid import SimplifiedReID
from database import DogDatabase
class DatasetCollectionApp:
"""Simplified app for collecting training datasets"""
def __init__(self):
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Restore database before initializing
self._restore_database()
self.detector = DogDetector(device=self.device)
self.tracker = DeepSORTTracker(
max_iou_distance=0.5,
max_age=90,
n_init=1,
use_appearance=True
)
self.reid = SimplifiedReID(device=self.device)
self.db = DogDatabase('dog_monitoring.db')
# Temporary session storage (in-memory)
self.temp_session = {}
self.current_video_path = None
self.is_processing = False
# Validation state: stores checkbox states for each temp_id
self.validation_data = {} # {temp_id: [bool, bool, ...]}
print("Dataset Collection App initialized")
print(f"Database has {len(self.db.get_all_dogs())} dogs")
def create_visualization_video(self, video_path: str, sample_rate: int) -> str:
"""Create visualization video with bold boxes from tracking.py only (no ReID, no labels)"""
try:
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print("ERROR: Cannot open input video")
return None
fps = cap.get(cv2.CAP_PROP_FPS) or 30
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
output_path = f"visualization_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp4"
# Try codecs
codecs = ['mp4v', 'XVID', 'MJPG']
out = None
for codec in codecs:
fourcc = cv2.VideoWriter_fourcc(*codec)
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
if out.isOpened():
print(f"Using codec: {codec}")
break
else:
out.release()
out = None
if out is None or not out.isOpened():
print("ERROR: Could not initialize VideoWriter with any codec")
cap.release()
return None
# Tracker only (no ReID)
viz_tracker = DeepSORTTracker(
max_iou_distance=0.5,
max_age=90,
n_init=1,
use_appearance=False
)
track_colors = {}
frame_num = 0
print("\nCreating visualization video (tracking IDs only)...")
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
if frame_num % sample_rate == 0:
detections = self.detector.detect(frame)
tracks = viz_tracker.update(detections)
for track in tracks:
tid = track.track_id
if tid not in track_colors:
track_colors[tid] = (
np.random.randint(50, 255),
np.random.randint(50, 255),
np.random.randint(50, 255)
)
color = track_colors[tid]
x1, y1, x2, y2 = map(int, track.bbox)
# Bold box only
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 8)
out.write(frame)
frame_num += 1
if frame_num % 30 == 0:
print(f"Visualization progress: {frame_num} frames")
cap.release()
out.release()
if os.path.exists(output_path) and os.path.getsize(output_path) > 1000:
print(f"Visualization video saved: {output_path}")
return output_path
else:
print("ERROR: Video file not created or is empty")
return None
except Exception as e:
print(f"Visualization video error: {e}")
import traceback
traceback.print_exc()
return None
def stop_processing(self):
"""Stop video processing"""
if self.is_processing:
self.is_processing = False
return "İşlem kullanıcı tarafından durduruldu", "Durduruldu", None
else:
return "Durdurulaack işlem yok", "İşlem yapılmıyor", None
def clear_reset(self):
"""Clear all temporary data and reset UI"""
self.temp_session.clear()
self.tracker.reset()
self.reid.reset_session()
self.current_video_path = None
self.validation_data = {}
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
return (
None,
"<p style='text-align:center; color:#868e96;'>Oturum temizlendi. Başlamak için yeni bir video yükleyin.</p>",
"",
"",
gr.update(visible=False)
)
def discard_session(self):
"""Discard temporary session completely"""
count = len(self.temp_session)
self.temp_session.clear()
self.tracker.reset()
self.reid.reset_session()
self.validation_data = {}
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
return (
gr.update(visible=False),
f"{count} geçici köpek iptal edildi. Farklı bir eşik deneyin.",
gr.update(visible=False)
)
def process_video(self, video_path: str, reid_threshold: float, sample_rate: int):
"""Process video and store in temporary session"""
if not video_path:
return None, "Lütfen bir video yükleyin", "", gr.update(visible=False), None
self.is_processing = True
self.current_video_path = video_path
self.temp_session.clear()
self.validation_data = {}
self.reid.set_threshold(reid_threshold)
self.reid.set_video_source(video_path)
self.tracker.reset()
self.reid.reset_session()
try:
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return None, "Video açılamıyor", "", gr.update(visible=False), None
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = cap.get(cv2.CAP_PROP_FPS) or 30
frame_num = 0
processed = 0
temp_dogs = {}
min_frame_gap = max(15, total_frames // 45)
blur_rejected = 0
print(f"\nProcessing video: {total_frames} frames, {fps} fps")
print(f"Minimum frame gap: {min_frame_gap} frames")
while cap.isOpened() and self.is_processing:
ret, frame = cap.read()
if not ret:
break
if frame_num % sample_rate == 0:
detections = self.detector.detect(frame)
tracks = self.tracker.update(detections)
for track in tracks:
if not self.is_processing:
break
result = self.reid.match_or_register(track)
temp_id = result['temp_id']
if temp_id == 0:
continue
if temp_id not in temp_dogs:
temp_dogs[temp_id] = {
'images': [],
'timestamps': [],
'confidences': [],
'bboxes': [],
'frame_numbers': [],
'last_captured_frame': -1
}
if len(temp_dogs[temp_id]['images']) >= 30:
continue
frames_since_last = frame_num - temp_dogs[temp_id]['last_captured_frame']
if frames_since_last < min_frame_gap:
continue
image_crop = None
for det in reversed(track.detections[-3:]):
if det.image_crop is not None:
image_crop = det.image_crop
break
if image_crop is None:
continue
gray = cv2.cvtColor(image_crop, cv2.COLOR_BGR2GRAY)
laplacian_var = cv2.Laplacian(gray, cv2.CV_64F).var()
if laplacian_var < 75:
blur_rejected += 1
continue
temp_dogs[temp_id]['images'].append(image_crop.copy())
temp_dogs[temp_id]['timestamps'].append(frame_num / fps)
temp_dogs[temp_id]['confidences'].append(det.confidence)
temp_dogs[temp_id]['bboxes'].append(det.bbox)
temp_dogs[temp_id]['frame_numbers'].append(frame_num)
temp_dogs[temp_id]['last_captured_frame'] = frame_num
processed += 1
frame_num += 1
if frame_num % 30 == 0:
progress = int((frame_num / total_frames) * 100)
print(f"Progress: {progress}%")
cap.release()
for temp_id in list(temp_dogs.keys()):
if 'last_captured_frame' in temp_dogs[temp_id]:
del temp_dogs[temp_id]['last_captured_frame']
original_count = len(temp_dogs)
discarded_ids = []
for temp_id in list(temp_dogs.keys()):
if len(temp_dogs[temp_id]['images']) < 14:
discarded_ids.append(temp_id)
del temp_dogs[temp_id]
discarded_count = len(discarded_ids)
self.temp_session = temp_dogs
for temp_id in temp_dogs.keys():
self.validation_data[temp_id] = [True] * len(temp_dogs[temp_id]['images'])
summary = f"İşlem tamamlandı!\n"
summary += f"Başlangıçta {original_count} köpek tespit edildi\n"
if discarded_count > 0:
summary += f"14'ten az resimli {discarded_count} köpek iptal edildi (ID'ler: {discarded_ids})\n"
summary += f"14+ resimli {len(temp_dogs)} köpek tutuldu\n"
summary += f"{processed} kare işlendi\n"
summary += f"Kare aralığı: {min_frame_gap} kare\n"
summary += f"Bulanık resimler reddedildi: {blur_rejected}\n\n"
if len(temp_dogs) == 0:
summary += "Hiçbir köpek minimum 14 resim gereksinimini karşılamadı.\n"
summary += "ReID eşiğini ayarlamayı veya daha uzun bir video kullanmayı deneyin."
show_validation = False
else:
summary += "Sonuçlar GEÇİCİ oturumda saklandı\n"
summary += "Kaydetmeden önce resimleri incelemek ve seçmek için Sekme 2'ye gidin"
show_validation = True
gallery_html = self._create_temp_gallery()
viz_video_path = self.create_visualization_video(video_path, sample_rate)
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
return (
gallery_html,
summary,
"Doğrulama için hazır" if len(temp_dogs) > 0 else "Geçerli köpek yok",
gr.update(visible=show_validation),
viz_video_path
)
except Exception as e:
import traceback
error = f"Hata: {str(e)}\n{traceback.format_exc()}"
return None, error, "", gr.update(visible=False), None
finally:
self.is_processing = False
def _create_temp_gallery(self) -> str:
"""Create gallery from temporary session"""
if not self.temp_session:
return "<p>Geçici oturumda köpek yok</p>"
html = "<div style='padding: 20px;'>"
html += "<h2 style='text-align:center; color:#ff6b6b;'>GEÇİCİ OTURUM - Henüz Kaydedilmedi</h2>"
html += f"<p style='text-align:center;'>Tespit edilen köpekler: {len(self.temp_session)}</p>"
html += "<div style='display: grid; grid-template-columns: repeat(auto-fit, minmax(400px, 1fr)); gap: 20px;'>"
for temp_id in sorted(self.temp_session.keys()):
dog_data = self.temp_session[temp_id]
images = dog_data['images']
display_images = images[:10]
html += f"""
<div style='border: 3px solid #ff6b6b; border-radius: 10px;
padding: 15px; background: #fff5f5;'>
<h3 style='margin: 0 0 10px 0; color:#c92a2a;'>
Geçici Köpek #{temp_id} (GEÇİCİ)
</h3>
<p style='color: #666;'>Toplam resim: {len(images)}</p>
<p style='color: #666; font-size:12px;'>
İlk {len(display_images)} resim gösteriliyor
</p>
<div style='display: grid; grid-template-columns: repeat(5, 1fr); gap: 5px;'>
"""
for img in display_images:
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_base64 = self._img_to_base64(img_rgb)
html += f"""
<img src='data:image/jpeg;base64,{img_base64}'
style='width: 100%; aspect-ratio: 1; object-fit: cover;
border-radius: 5px;'>
"""
html += "</div></div>"
html += "</div></div>"
return html
def load_validation_interface(self):
"""Load validation interface with checkbox selection"""
if not self.temp_session:
return (
gr.update(visible=False),
"Doğrulanacak geçici oturum yok. Önce bir video işleyin.",
""
)
html = "<div style='padding: 20px;'>"
html += "<h2 style='text-align:center;'>Resimleri İnceleyin ve Seçin</h2>"
html += "<p style='text-align:center; color:#666;'>Tutmak/atmak için resimleri işaretleyin/işaretini kaldırın. Hepsi varsayılan olarak seçilidir.</p>"
html += "</div>"
status = f"{len(self.temp_session)} köpek doğrulama için yüklendi. İnceleyin ve hazır olduğunuzda 'Seçili Fotoğrafları Kaydet' düğmesine tıklayın."
return (
gr.update(visible=True),
status,
html
)
def save_validated_to_database(self, *checkbox_states):
"""Save validated images to permanent database"""
if not self.temp_session:
return "Kaydedilecek geçici oturum yok", gr.update()
try:
saved_count = 0
total_images_saved = 0
checkbox_idx = 0
for temp_id in sorted(self.temp_session.keys()):
dog_data = self.temp_session[temp_id]
num_images = len(dog_data['images'])
selected_indices = []
for i in range(num_images):
if checkbox_idx < len(checkbox_states) and checkbox_states[checkbox_idx]:
selected_indices.append(i)
checkbox_idx += 1
if not selected_indices:
continue
dog_id = self.db.add_dog(
name=f"Kopek_{datetime.now().strftime('%Y%m%d_%H%M%S')}_{temp_id}"
)
for idx in selected_indices:
self.db.add_dog_image(
dog_id=dog_id,
image=dog_data['images'][idx],
timestamp=dog_data['timestamps'][idx],
confidence=dog_data['confidences'][idx],
bbox=dog_data['bboxes'][idx]
)
total_images_saved += 1
saved_count += 1
self.temp_session.clear()
self.validation_data = {}
self._backup_database()
db_html = self._show_database()
summary = f"✅ {saved_count} köpek ve {total_images_saved} seçili resim başarıyla kalıcı veritabanına kaydedildi!"
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
return summary, gr.update(value=db_html, visible=True)
except Exception as e:
import traceback
error = f"Kayıt hatası: {str(e)}\n{traceback.format_exc()}"
return error, gr.update()
def _backup_database(self):
"""Backup database to HuggingFace"""
try:
from huggingface_hub import HfApi
hf_token = os.getenv('HF_TOKEN')
if not hf_token:
print("Uyarı: HF_TOKEN bulunamadı, yedekleme atlanıyor")
return
api = HfApi()
repo_id = "mustafa2ak/dog-dataset-backup"
api.upload_file(
path_or_fileobj='dog_monitoring.db',
path_in_repo='dog_monitoring.db',
repo_id=repo_id,
repo_type='dataset',
token=hf_token
)
print(f"✅ Veritabanı {repo_id} adresine yedeklendi")
except Exception as e:
print(f"Yedekleme başarısız: {str(e)}")
def _restore_database(self):
"""Restore database from HuggingFace"""
try:
from huggingface_hub import hf_hub_download
hf_token = os.getenv('HF_TOKEN')
if not hf_token:
print("HF_TOKEN bulunamadı, yeni veritabanı ile başlanıyor")
return
repo_id = "mustafa2ak/dog-dataset-backup"
db_path = hf_hub_download(
repo_id=repo_id,
filename='dog_monitoring.db',
repo_type='dataset',
token=hf_token
)
import shutil
shutil.copy(db_path, 'dog_monitoring.db')
print(f"✅ Veritabanı {repo_id} adresinden geri yüklendi")
except Exception as e:
print(f"Yedek bulunamadı veya geri yükleme başarısız: {str(e)}")
def _show_database(self) -> str:
"""Show current database contents"""
dogs = self.db.get_all_dogs()
if dogs.empty:
return "<p style='text-align:center; color:#868e96;'>Veritabanında henüz köpek yok</p>"
html = "<div style='padding: 20px;'>"
html += f"<h2 style='text-align:center; color:#228be6;'>Kalıcı Veritabanı ({len(dogs)} köpek)</h2>"
html += "<div style='display: grid; grid-template-columns: repeat(auto-fit, minmax(300px, 1fr)); gap: 20px;'>"
for _, dog in dogs.iterrows():
images = self.db.get_dog_images(dog['dog_id'])
display_count = min(6, len(images))
html += f"""
<div style='border: 2px solid #228be6; border-radius: 10px;
padding: 15px; background: #e7f5ff;'>
<h3 style='margin: 0 0 10px 0; color:#1971c2;'>{dog['name']}</h3>
<p style='color: #666; margin: 5px 0;'>ID: {dog['dog_id']}</p>
<p style='color: #666; margin: 5px 0;'>Resimler: {len(images)}</p>
<p style='color: #666; margin: 5px 0; font-size: 12px;'>
İlk görülme: {dog['first_seen']}
</p>
<div style='display: grid; grid-template-columns: repeat(3, 1fr); gap: 5px; margin-top: 10px;'>
"""
for img_data in images[:display_count]:
img = img_data['image']
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_base64 = self._img_to_base64(img_rgb)
html += f"""
<img src='data:image/jpeg;base64,{img_base64}'
style='width: 100%; aspect-ratio: 1; object-fit: cover;
border-radius: 5px;'>
"""
html += "</div></div>"
html += "</div></div>"
return html
def export_dataset(self):
"""Export dataset as downloadable ZIP file"""
try:
dogs = self.db.get_all_dogs()
if dogs.empty:
return "Veritabanında dışa aktarılacak köpek yok", None
zip_buffer = BytesIO()
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zipf:
total_images = 0
export_info = []
for _, dog in dogs.iterrows():
dog_id = dog['dog_id']
dog_name = dog['name'] or f"kopek_{dog_id}"
safe_name = "".join(c if c.isalnum() or c in ('_', '-') else '_' for c in dog_name)
images = self.db.get_dog_images(
dog_id=dog_id,
validated_only=False,
include_discarded=False
)
if not images:
continue
for idx, img_data in enumerate(images):
image = img_data['image']
img_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(img_rgb)
img_buffer = BytesIO()
pil_image.save(img_buffer, format='JPEG', quality=95)
img_bytes = img_buffer.getvalue()
filename = f"egitim_veri_seti/{safe_name}/resim_{idx+1:04d}.jpg"
zipf.writestr(filename, img_bytes)
total_images += 1
export_info.append({
'dog_id': int(dog_id),
'name': dog_name,
'image_count': len(images)
})
print(f"Exported {len(images)} images for {dog_name}")
metadata = {
'export_date': datetime.now().isoformat(),
'total_dogs': len(dogs),
'total_images': total_images,
'dogs': export_info
}
zipf.writestr('egitim_veri_seti/metadata.json', json.dumps(metadata, indent=2, ensure_ascii=False))
zip_buffer.seek(0)
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.zip', prefix='kopek_veri_seti_')
temp_file.write(zip_buffer.getvalue())
temp_file.close()
summary = f"✅ Veri seti başarıyla dışa aktarıldı!\n\n"
summary += f"📦 Toplam köpek: {len(dogs)}\n"
summary += f"🖼️ Toplam resim: {total_images}\n\n"
summary += "Bilgisayarınıza kaydetmek için aşağıdaki indirme düğmesine tıklayın."
return summary, temp_file.name
except Exception as e:
import traceback
error = f"Dışa aktarma hatası: {str(e)}\n{traceback.format_exc()}"
return error, None
def _img_to_base64(self, img_array: np.ndarray) -> str:
"""Convert image array to base64 string"""
img_pil = Image.fromarray(img_array)
buffered = BytesIO()
img_pil.save(buffered, format="JPEG", quality=85)
return base64.b64encode(buffered.getvalue()).decode()
def create_interface(self):
"""Create Gradio interface with improved Turkish labels"""
with gr.Blocks(title="Köpek Veri Seti Toplama", theme=gr.themes.Soft()) as app:
gr.Markdown("""
# Yapay zeka ile sokak köpeği takibi
Üç aşamada tamamlanacak.
**📊 1. aşama – veri toplama (şu anki aşama)**
Yapay zeka modeli eğitimi için temiz ve etiketli veri seti oluşturuluyor.
**🤖 2. aşama – yapay zeka modeli eğitimi**
Sistem %90 başarı oranıyla her köpeği bireysel olarak ayırt edebilecek.
**📍 3. aşama – sahada kullanım**
Şehir genelinde kalıcı, otomatik köpek takip sistemi ve veritabanı oluşturulacak.
---
""")
with gr.Tabs():
# TAB 1
with gr.Tab("1️⃣ Video yükle ve analiz et"):
gr.Markdown("### Köpekleri tespit etmek için video yükleyin ve analiz edin")
with gr.Row():
with gr.Column():
video_display = gr.Video(
label="📹 Video yükle veya sonuçları izle",
sources=["upload"],
autoplay=True,
loop=True
)
with gr.Row():
reid_threshold = gr.Slider(
minimum=0.1, maximum=0.9, value=0.3, step=0.05,
label="🎯 Köpek tanıma hassasiyeti"
)
sample_rate = gr.Slider(
minimum=1, maximum=10, value=3, step=1,
label="⏱️ Saniyede kaç kare işlensin?"
)
with gr.Row():
process_btn = gr.Button("⚙️ Videoyu analiz et", variant="primary", size="lg")
stop_btn = gr.Button("🛑 İşlemi durdur", variant="stop")
clear_btn = gr.Button("🔄 Yeniden başla")
progress_text = gr.Textbox(label="⏳ İşlem durumu", lines=1)
status_text = gr.Textbox(label="📊 Detaylı bilgi", lines=8)
with gr.Column():
gallery_output = gr.HTML(label="🐕 Bulunan köpekler")
with gr.Row():
discard_btn = gr.Button("↩️ Farklı ayarlarla tekrar dene", variant="secondary")
# TAB 2
with gr.Tab("2️⃣ Fotoğrafları incele ve kaydet"):
gr.Markdown("### Tespit edilen köpeklerin fotoğraflarını inceleyin ve kaydetmek istediklerinizi seçin")
with gr.Column(visible=False) as validation_container:
validation_status = gr.Textbox(label="📋 Durum", lines=2)
load_btn = gr.Button("✅ Fotoğrafları incele ve seç", variant="primary", size="lg")
@gr.render(inputs=[], triggers=[load_btn.click])
def render_validation():
if not self.temp_session:
gr.Markdown("Geçici oturum yok. Önce bir video işleyin.")
return
checkboxes = []
for temp_id in sorted(self.temp_session.keys()):
dog_data = self.temp_session[temp_id]
images = dog_data['images']
with gr.Group():
gr.Markdown(f"### 🐕 Köpek #{temp_id} - {len(images)} resim")
for i in range(0, len(images), 6):
with gr.Row():
for j in range(6):
if i + j < len(images):
img = images[i + j]
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
with gr.Column(scale=1, min_width=120):
gr.Image(
value=img_rgb,
label=f"#{i+j+1}",
interactive=False,
height=150,
show_download_button=False
)
cb = gr.Checkbox(
label="Tut",
value=True,
elem_id=f"cb_{temp_id}_{i+j}"
)
checkboxes.append(cb)
save_btn = gr.Button("💾 Seçili fotoğrafları kaydet", variant="primary", size="lg")
save_status = gr.Textbox(label="Kayıt durumu", lines=3)
save_btn.click(
fn=self.save_validated_to_database,
inputs=checkboxes,
outputs=[save_status, validation_container]
)
# TAB 3
with gr.Tab("3️⃣ Kayıtları gör ve indir"):
gr.Markdown("### Kaydedilmiş köpekleri görüntüleyin ve veri setini bilgisayarınıza indirin")
refresh_db_btn = gr.Button("🔄 Kaydedilenleri göster", variant="secondary")
database_display = gr.HTML(label="Veritabanı içeriği", visible=False)
gr.Markdown("---")
export_btn = gr.Button("📦 Veri setini indir (ZIP)", variant="primary", size="lg")
export_status = gr.Textbox(label="İndirme durumu", lines=5)
download_btn = gr.File(label="ZIP dosyasını bilgisayara kaydet", interactive=False)
# Event handlers
process_btn.click(
fn=self.process_video,
inputs=[video_display, reid_threshold, sample_rate],
outputs=[
gallery_output,
status_text,
progress_text,
validation_container,
video_display
]
)
stop_btn.click(
fn=self.stop_processing,
outputs=[status_text, progress_text, gallery_output]
)
clear_btn.click(
fn=self.clear_reset,
outputs=[
video_display,
gallery_output,
status_text,
progress_text,
validation_container
]
)
discard_btn.click(
fn=self.discard_session,
outputs=[validation_container, status_text, database_display]
)
load_btn.click(
fn=self.load_validation_interface,
outputs=[validation_container, validation_status, gr.HTML()]
)
refresh_db_btn.click(
fn=lambda: gr.update(value=self._show_database(), visible=True),
outputs=[database_display]
)
export_btn.click(
fn=self.export_dataset,
outputs=[export_status, download_btn]
)
return app
def launch(self):
"""Launch the Gradio app"""
app = self.create_interface()
app.launch(share=False, server_name="0.0.0.0", server_port=7860)
if __name__ == "__main__":
app = DatasetCollectionApp()
app.launch() |