Spaces:
Sleeping
Sleeping
File size: 33,216 Bytes
96d23c9 cf6bea7 96d23c9 cf6bea7 96d23c9 cf6bea7 96d23c9 cf6bea7 96d23c9 cf6bea7 96d23c9 cf6bea7 96d23c9 cf6bea7 96d23c9 cf6bea7 96d23c9 cf6bea7 96d23c9 cf6bea7 96d23c9 cf6bea7 96d23c9 cf6bea7 96d23c9 cf6bea7 96d23c9 15ef815 0077912 15ef815 96d23c9 0077912 96d23c9 5b5967c 96d23c9 cf6bea7 96d23c9 cf6bea7 96d23c9 cf6bea7 96d23c9 c9e86a0 96d23c9 c9e86a0 3a5fb08 c9e86a0 96d23c9 07c9b36 96d23c9 07c9b36 96d23c9 07c9b36 96d23c9 6bba3db 07c9b36 d087a9a 96d23c9 07c9b36 96d23c9 07c9b36 96d23c9 07c9b36 efeb13e 96d23c9 cf6bea7 96d23c9 cf6bea7 96d23c9 34cb466 96d23c9 34cb466 96d23c9 cf6bea7 96d23c9 cf6bea7 96d23c9 cf6bea7 96d23c9 cf6bea7 96d23c9 cf6bea7 15ef815 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 |
"""
database.py - SQLite Database Manager for Dog Monitoring System
Handles persistent storage of dog data, features, and annotations
"""
import sqlite3
import json
import pickle
import base64
import numpy as np
import cv2
from datetime import datetime
from typing import List, Dict, Optional, Tuple, Any
from pathlib import Path
import pandas as pd
class DogDatabase:
"""SQLite database manager for dog monitoring system"""
def __init__(self, db_path: str = "dog_monitoring.db"):
"""Initialize database connection and create tables"""
self.db_path = db_path
self.conn = sqlite3.connect(db_path, check_same_thread=False)
self.conn.row_factory = sqlite3.Row
self.cursor = self.conn.cursor()
# Create tables if they don't exist
self._create_tables()
def _create_tables(self):
"""Create all necessary database tables"""
# Dogs table - main registry
self.cursor.execute("""
CREATE TABLE IF NOT EXISTS dogs (
dog_id INTEGER PRIMARY KEY,
name TEXT,
first_seen TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
last_seen TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
total_sightings INTEGER DEFAULT 1,
notes TEXT,
merged_from TEXT,
status TEXT DEFAULT 'active'
)
""")
# Dog features table
self.cursor.execute("""
CREATE TABLE IF NOT EXISTS dog_features (
feature_id INTEGER PRIMARY KEY AUTOINCREMENT,
dog_id INTEGER,
resnet_features BLOB,
color_histogram BLOB,
timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
confidence REAL,
FOREIGN KEY (dog_id) REFERENCES dogs(dog_id)
)
""")
# Dog images table
self.cursor.execute("""
CREATE TABLE IF NOT EXISTS dog_images (
image_id INTEGER PRIMARY KEY AUTOINCREMENT,
dog_id INTEGER,
image_data BLOB,
thumbnail BLOB,
width INTEGER,
height INTEGER,
timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
frame_number INTEGER,
video_source TEXT,
bbox TEXT,
confidence REAL,
pose_keypoints TEXT,
is_validated BOOLEAN DEFAULT 0,
is_discarded BOOLEAN DEFAULT 0,
FOREIGN KEY (dog_id) REFERENCES dogs(dog_id)
)
""")
# Body parts table
self.cursor.execute("""
CREATE TABLE IF NOT EXISTS body_parts (
part_id INTEGER PRIMARY KEY AUTOINCREMENT,
dog_id INTEGER,
image_id INTEGER,
part_type TEXT,
part_image BLOB,
crop_bbox TEXT,
confidence REAL,
is_validated BOOLEAN DEFAULT 0,
is_discarded BOOLEAN DEFAULT 0,
FOREIGN KEY (dog_id) REFERENCES dogs(dog_id),
FOREIGN KEY (image_id) REFERENCES dog_images(image_id)
)
""")
# Sightings table
self.cursor.execute("""
CREATE TABLE IF NOT EXISTS sightings (
sighting_id INTEGER PRIMARY KEY AUTOINCREMENT,
dog_id INTEGER,
timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
position_x REAL,
position_y REAL,
video_source TEXT,
frame_number INTEGER,
confidence REAL,
FOREIGN KEY (dog_id) REFERENCES dogs(dog_id)
)
""")
# Processing sessions table
self.cursor.execute("""
CREATE TABLE IF NOT EXISTS sessions (
session_id INTEGER PRIMARY KEY AUTOINCREMENT,
start_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
end_time TIMESTAMP,
video_path TEXT,
total_frames INTEGER,
dogs_detected INTEGER,
settings TEXT
)
""")
# Create indexes
self.cursor.execute("CREATE INDEX IF NOT EXISTS idx_dog_features ON dog_features(dog_id)")
self.cursor.execute("CREATE INDEX IF NOT EXISTS idx_dog_images ON dog_images(dog_id)")
self.cursor.execute("CREATE INDEX IF NOT EXISTS idx_sightings ON sightings(dog_id)")
self.conn.commit()
# ========== Dog Management ==========
def add_dog(self, name: str = None) -> int:
"""Add new dog to database and return dog_id"""
cursor = self.conn.cursor()
cursor.execute('''
INSERT INTO dogs (name, first_seen, status)
VALUES (?, datetime('now'), 'active')
''', (name,))
self.conn.commit()
return cursor.lastrowid
def update_dog_sighting(self, dog_id: int):
"""Update last seen time and increment sighting count"""
self.cursor.execute("""
UPDATE dogs
SET last_seen = CURRENT_TIMESTAMP,
total_sightings = total_sightings + 1
WHERE dog_id = ?
""", (dog_id,))
self.conn.commit()
def export_training_dataset(self, output_dir: str = "training_dataset") -> Dict:
"""
Export database images to folder structure for fine-tuning
Output structure:
training_dataset/
βββ dog_1/
β βββ img_0000.jpg
β βββ ...
βββ dog_2/
βββ metadata.json
Returns:
dict with export statistics
"""
from pathlib import Path
import json
from datetime import datetime
output_path = Path(output_dir)
output_path.mkdir(parents=True, exist_ok=True)
# Get all active dogs
dogs_df = self.get_all_dogs(active_only=True)
if dogs_df.empty:
return {
'success': False,
'message': 'No dogs in database',
'total_dogs': 0,
'total_images': 0
}
total_images = 0
export_info = []
for _, dog in dogs_df.iterrows():
dog_id = dog['dog_id']
dog_name = dog['name'] or f"dog_{dog_id}"
# Create folder for this dog
dog_folder = output_path / dog_name
dog_folder.mkdir(exist_ok=True)
# Get all non-discarded images
images = self.get_dog_images(
dog_id=dog_id,
validated_only=False,
include_discarded=False
)
if not images:
print(f"Warning: Dog {dog_id} has no images")
continue
# Save each image as JPG
for idx, img_data in enumerate(images):
image = img_data['image'] # OpenCV array from BLOB
filename = f"img_{idx:04d}.jpg"
filepath = dog_folder / filename
# Write to disk
cv2.imwrite(str(filepath), image)
total_images += len(images)
export_info.append({
'dog_id': dog_id,
'name': dog_name,
'image_count': len(images),
'folder': str(dog_folder)
})
print(f"Exported {len(images)} images for {dog_name}")
# Create metadata file
metadata = {
'export_date': datetime.now().isoformat(),
'total_dogs': len(dogs_df),
'total_images': total_images,
'output_directory': str(output_path),
'dogs': export_info
}
metadata_path = output_path / 'metadata.json'
with open(metadata_path, 'w') as f:
json.dump(metadata, f, indent=2)
print(f"\nExport complete: {len(dogs_df)} dogs, {total_images} images")
print(f"Location: {output_path}")
return {
'success': True,
'total_dogs': len(dogs_df),
'total_images': total_images,
'output_path': str(output_path),
'dogs': export_info
}
def merge_dogs(self, keep_id: int, merge_id: int) -> bool:
"""Merge two dogs, keeping keep_id"""
try:
self.cursor.execute("UPDATE dog_features SET dog_id = ? WHERE dog_id = ?", (keep_id, merge_id))
self.cursor.execute("UPDATE dog_images SET dog_id = ? WHERE dog_id = ?", (keep_id, merge_id))
self.cursor.execute("UPDATE sightings SET dog_id = ? WHERE dog_id = ?", (keep_id, merge_id))
self.cursor.execute("SELECT merged_from FROM dogs WHERE dog_id = ?", (merge_id,))
row = self.cursor.fetchone()
merged_history = json.loads(row['merged_from'] if row and row['merged_from'] else '[]')
merged_history.append(merge_id)
self.cursor.execute("""
UPDATE dogs
SET merged_from = ?,
total_sightings = total_sightings + (
SELECT total_sightings FROM dogs WHERE dog_id = ?
)
WHERE dog_id = ?
""", (json.dumps(merged_history), merge_id, keep_id))
self.cursor.execute("UPDATE dogs SET status = 'merged' WHERE dog_id = ?", (merge_id,))
self.conn.commit()
return True
except Exception as e:
print(f"Error merging dogs: {e}")
self.conn.rollback()
return False
def delete_dog(self, dog_id: int, hard_delete: bool = False):
"""Delete or mark dog as deleted"""
if hard_delete:
self.cursor.execute("DELETE FROM dog_features WHERE dog_id = ?", (dog_id,))
self.cursor.execute("DELETE FROM dog_images WHERE dog_id = ?", (dog_id,))
self.cursor.execute("DELETE FROM sightings WHERE dog_id = ?", (dog_id,))
self.cursor.execute("DELETE FROM dogs WHERE dog_id = ?", (dog_id,))
else:
self.cursor.execute("UPDATE dogs SET status = 'deleted' WHERE dog_id = ?", (dog_id,))
self.conn.commit()
# ========== Features Management ==========
def save_features(self, dog_id: int, resnet_features: np.ndarray,
color_histogram: np.ndarray, confidence: float):
"""Save dog features to database"""
resnet_blob = pickle.dumps(resnet_features)
color_blob = pickle.dumps(color_histogram)
self.cursor.execute("""
INSERT INTO dog_features
(dog_id, resnet_features, color_histogram, confidence)
VALUES (?, ?, ?, ?)
""", (dog_id, resnet_blob, color_blob, confidence))
self.conn.commit()
def get_features(self, dog_id: int, limit: int = 20) -> List[Dict]:
"""Get recent features for a dog"""
self.cursor.execute("""
SELECT * FROM dog_features
WHERE dog_id = ?
ORDER BY timestamp DESC
LIMIT ?
""", (dog_id, limit))
features = []
for row in self.cursor.fetchall():
features.append({
'resnet_features': pickle.loads(row['resnet_features']),
'color_histogram': pickle.loads(row['color_histogram']),
'confidence': row['confidence'],
'timestamp': row['timestamp']
})
return features
# ========== Images Management ==========
# ========== Images Management ==========
def save_image(self, dog_id: int, image: np.ndarray,
frame_number: int, video_source: str,
bbox: List[float], confidence: float,
pose_keypoints: Optional[List] = None):
"""Save dog image to database"""
_, buffer = cv2.imencode('.jpg', image)
image_data = base64.b64encode(buffer).decode('utf-8')
thumbnail = cv2.resize(image, (128, 128))
_, thumb_buffer = cv2.imencode('.jpg', thumbnail, [cv2.IMWRITE_JPEG_QUALITY, 70])
thumb_data = base64.b64encode(thumb_buffer).decode('utf-8')
h, w = image.shape[:2]
self.cursor.execute("""
INSERT INTO dog_images
(dog_id, image_data, thumbnail, width, height,
frame_number, video_source, bbox, confidence, pose_keypoints)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
""", (dog_id, image_data, thumb_data, w, h,
frame_number, video_source, json.dumps(bbox),
confidence, json.dumps(pose_keypoints) if pose_keypoints else None))
self.conn.commit()
return self.cursor.lastrowid
def add_dog_image(self, dog_id: int, image: np.ndarray,
timestamp: float, confidence: float, bbox: tuple):
"""Add a dog image to database (simplified for dataset collection)"""
try:
# Convert image to base64 for storage
_, buffer = cv2.imencode('.jpg', image)
image_data = base64.b64encode(buffer).decode('utf-8')
# Create thumbnail
thumbnail = cv2.resize(image, (128, 128))
_, thumb_buffer = cv2.imencode('.jpg', thumbnail, [cv2.IMWRITE_JPEG_QUALITY, 70])
thumb_data = base64.b64encode(thumb_buffer).decode('utf-8')
h, w = image.shape[:2]
# Insert into database
self.cursor.execute("""
INSERT INTO dog_images
(dog_id, image_data, thumbnail, width, height,
timestamp, bbox, confidence)
VALUES (?, ?, ?, ?, ?, ?, ?, ?)
""", (dog_id, image_data, thumb_data, w, h,
timestamp, json.dumps(bbox), confidence))
# Update dog's last_seen and sighting count
self.cursor.execute("""
UPDATE dogs
SET last_seen = datetime('now'),
total_sightings = total_sightings + 1
WHERE dog_id = ?
""", (dog_id,))
self.conn.commit()
return self.cursor.lastrowid
except Exception as e:
self.conn.rollback()
print(f"Error adding dog image: {e}")
raise
def get_dog_images(self, dog_id: int, validated_only: bool = False,
include_discarded: bool = False) -> List[Dict]:
"""Get all images for a dog"""
query = "SELECT * FROM dog_images WHERE dog_id = ?"
params = [dog_id]
if validated_only:
query += " AND is_validated = 1"
if not include_discarded:
query += " AND is_discarded = 0"
query += " ORDER BY timestamp DESC"
self.cursor.execute(query, params)
rows = self.cursor.fetchall()
images = []
for row in rows:
# β
Decode base64 string to bytes first
image_bytes = base64.b64decode(row['image_data'])
nparr = np.frombuffer(image_bytes, np.uint8)
image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
images.append({
'image_id': row['image_id'],
'image': image,
'thumbnail': row['thumbnail'],
'bbox': json.loads(row['bbox']) if row['bbox'] else [],
'confidence': row['confidence'],
'frame_number': row['frame_number'] if 'frame_number' in row.keys() else None,
'video_source': row['video_source'] if 'video_source' in row.keys() else None,
'is_validated': row['is_validated'],
'is_discarded': row['is_discarded'],
'pose_keypoints': json.loads(row['pose_keypoints']) if row['pose_keypoints'] else None
})
return images
def validate_image(self, image_id: int, is_valid: bool = True):
"""Mark image as validated or discarded"""
if is_valid:
self.cursor.execute("UPDATE dog_images SET is_validated = 1 WHERE image_id = ?", (image_id,))
else:
self.cursor.execute("UPDATE dog_images SET is_discarded = 1 WHERE image_id = ?", (image_id,))
self.conn.commit()
# ========== Body Parts Management ==========
def save_body_parts(self, dog_id: int, image_id: int,
head_crop: Optional[np.ndarray],
torso_crop: Optional[np.ndarray],
rear_crop: Optional[np.ndarray],
confidences: Dict[str, float]):
"""Save body part crops to database"""
parts = {
'head': head_crop,
'torso': torso_crop,
'rear': rear_crop
}
for part_type, crop in parts.items():
if crop is not None:
_, buffer = cv2.imencode('.jpg', crop)
crop_data = base64.b64encode(buffer).decode('utf-8')
confidence = confidences.get(part_type, 0.0)
self.cursor.execute("""
INSERT INTO body_parts
(dog_id, image_id, part_type, part_image, confidence)
VALUES (?, ?, ?, ?, ?)
""", (dog_id, image_id, part_type, crop_data, confidence))
self.conn.commit()
def get_body_parts(self, dog_id: int, part_type: Optional[str] = None,
validated_only: bool = False, include_discarded: bool = False) -> List[Dict]:
"""Get body part crops for a dog"""
query = "SELECT * FROM body_parts WHERE dog_id = ?"
params = [dog_id]
if part_type:
query += " AND part_type = ?"
params.append(part_type)
if validated_only:
query += " AND is_validated = 1"
if not include_discarded:
query += " AND is_discarded = 0"
self.cursor.execute(query, params)
parts = []
for row in self.cursor.fetchall():
image_bytes = base64.b64decode(row['part_image'])
nparr = np.frombuffer(image_bytes, np.uint8)
image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
parts.append({
'part_id': row['part_id'],
'part_type': row['part_type'],
'image': image,
'confidence': row['confidence'],
'is_validated': row['is_validated'],
'image_id': row['image_id']
})
return parts
def validate_body_part(self, part_id: int, is_valid: bool = True):
"""Mark body part as validated or discarded"""
if is_valid:
self.cursor.execute("UPDATE body_parts SET is_validated = 1 WHERE part_id = ?", (part_id,))
else:
self.cursor.execute("UPDATE body_parts SET is_discarded = 1 WHERE part_id = ?", (part_id,))
self.conn.commit()
def add_sighting(self, dog_id: int, position: Tuple[float, float],
video_source: str, frame_number: int, confidence: float):
"""Record a dog sighting"""
self.cursor.execute("""
INSERT INTO sightings
(dog_id, position_x, position_y, video_source, frame_number, confidence)
VALUES (?, ?, ?, ?, ?, ?)
""", (dog_id, position[0], position[1], video_source, frame_number, confidence))
self.conn.commit()
# ========== Query Methods ==========
def get_all_dogs(self, active_only: bool = True) -> pd.DataFrame:
"""Get all dogs as DataFrame"""
query = "SELECT * FROM dogs"
if active_only:
query += " WHERE status = 'active'"
query += " ORDER BY dog_id"
return pd.read_sql_query(query, self.conn)
def get_dog_statistics(self) -> Dict:
"""Get overall statistics"""
stats = {}
self.cursor.execute("SELECT COUNT(*) FROM dogs WHERE status = 'active'")
stats['total_active_dogs'] = self.cursor.fetchone()[0]
self.cursor.execute("SELECT COUNT(*) FROM dog_images WHERE is_discarded = 0")
stats['total_images'] = self.cursor.fetchone()[0]
self.cursor.execute("SELECT COUNT(*) FROM dog_images WHERE is_validated = 1")
stats['validated_images'] = self.cursor.fetchone()[0]
self.cursor.execute("SELECT COUNT(*) FROM sightings")
stats['total_sightings'] = self.cursor.fetchone()[0]
self.cursor.execute("""
SELECT d.dog_id, d.name, d.total_sightings
FROM dogs d
WHERE d.status = 'active'
ORDER BY d.total_sightings DESC
LIMIT 1
""")
row = self.cursor.fetchone()
if row:
stats['most_seen_dog'] = {
'dog_id': row[0],
'name': row[1] or f"Dog #{row[0]}",
'sightings': row[2]
}
return stats
# ========== Export Methods ==========
def export_training_dataset(self, output_dir: str, validated_only: bool = True) -> Dict:
"""Export dataset with body parts for fine-tuning"""
output_path = Path(output_dir)
output_path.mkdir(parents=True, exist_ok=True)
images_dir = output_path / "images"
images_dir.mkdir(exist_ok=True)
dataset = []
dogs = self.get_all_dogs()
for _, dog in dogs.iterrows():
dog_id = dog['dog_id']
dog_dir = images_dir / f"dog_{dog_id}"
dog_dir.mkdir(exist_ok=True)
for part in ['full', 'head', 'torso', 'rear']:
(dog_dir / part).mkdir(exist_ok=True)
images = self.get_dog_images(dog_id, validated_only=validated_only)
for idx, img_data in enumerate(images):
full_path = dog_dir / 'full' / f"img_{idx:04d}.jpg"
cv2.imwrite(str(full_path), img_data['image'])
parts = self.get_body_parts(dog_id, validated_only=validated_only)
part_paths = {}
for part_data in parts:
if part_data['image_id'] == img_data['image_id']:
part_type = part_data['part_type']
part_path = dog_dir / part_type / f"img_{idx:04d}.jpg"
cv2.imwrite(str(part_path), part_data['image'])
part_paths[part_type] = str(part_path.relative_to(output_path))
dataset_entry = {
'dog_id': dog_id,
'full_image': str(full_path.relative_to(output_path)),
'bbox': img_data['bbox'],
'confidence': img_data['confidence']
}
for part_type in ['head', 'torso', 'rear']:
dataset_entry[f'{part_type}_image'] = part_paths.get(part_type, None)
dataset.append(dataset_entry)
dataset_df = pd.DataFrame(dataset)
dataset_df.to_csv(output_path / "dataset.csv", index=False)
metadata = {
'total_dogs': len(dogs),
'total_images': len(dataset),
'export_date': datetime.now().isoformat(),
'validated_only': validated_only,
'includes_body_parts': True
}
with open(output_path / "metadata.json", 'w') as f:
json.dump(metadata, f, indent=2)
from sklearn.model_selection import train_test_split
train_df, test_df = train_test_split(dataset_df, test_size=0.2, stratify=dataset_df['dog_id'])
train_df.to_csv(output_path / "train.csv", index=False)
test_df.to_csv(output_path / "test.csv", index=False)
metadata['train_samples'] = len(train_df)
metadata['test_samples'] = len(test_df)
return metadata
# ========== Cleanup Methods ==========
def reset_database(self, confirm: bool = False):
"""Reset entire database"""
if not confirm:
return False
tables = ['sightings', 'dog_images', 'dog_features', 'dogs', 'sessions']
for table in tables:
self.cursor.execute(f"DELETE FROM {table}")
self.cursor.execute("DELETE FROM sqlite_sequence")
self.conn.commit()
return True
def vacuum(self):
"""Optimize database file size"""
self.conn.execute("VACUUM")
def close(self):
"""Close database connection"""
self.conn.close()
def __del__(self):
"""Ensure connection is closed"""
if hasattr(self, 'conn'):
self.conn.close()
# ========== Health Methods (NEW) ==========
def save_health_assessment(self, dog_id: int, health_score: float, status: str,
posture_score: float = None, gait_score: float = None,
body_condition_score: float = None, activity_score: float = None,
alerts: List[str] = None, recommendations: List[str] = None,
confidence: float = 0.5, video_source: str = None,
frame_number: int = None):
"""Save health assessment to database"""
self.cursor.execute("""
INSERT INTO health_assessments
(dog_id, health_score, status, posture_score, gait_score,
body_condition_score, activity_score, alerts, recommendations,
confidence, video_source, frame_number)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
""", (dog_id, health_score, status, posture_score, gait_score,
body_condition_score, activity_score,
json.dumps(alerts) if alerts else None,
json.dumps(recommendations) if recommendations else None,
confidence, video_source, frame_number))
self.cursor.execute("""
UPDATE dogs
SET last_health_score = ?,
health_status = ?
WHERE dog_id = ?
""", (health_score, status, dog_id))
self.conn.commit()
def get_health_history(self, dog_id: int, limit: int = 50) -> List[Dict]:
"""Get health assessment history for a dog"""
self.cursor.execute("""
SELECT * FROM health_assessments
WHERE dog_id = ?
ORDER BY timestamp DESC
LIMIT ?
""", (dog_id, limit))
assessments = []
for row in self.cursor.fetchall():
assessments.append({
'timestamp': row['timestamp'],
'health_score': row['health_score'],
'status': row['status'],
'posture_score': row['posture_score'],
'gait_score': row['gait_score'],
'body_condition_score': row['body_condition_score'],
'activity_score': row['activity_score'],
'alerts': json.loads(row['alerts']) if row['alerts'] else [],
'recommendations': json.loads(row['recommendations']) if row['recommendations'] else [],
'confidence': row['confidence']
})
return assessments
def get_health_statistics(self) -> Dict:
"""Get overall health statistics"""
stats = {}
self.cursor.execute("""
SELECT AVG(last_health_score) as avg_health,
COUNT(CASE WHEN last_health_score >= 8 THEN 1 END) as healthy_count,
COUNT(CASE WHEN last_health_score < 6 THEN 1 END) as unhealthy_count,
COUNT(*) as total_dogs
FROM dogs
WHERE status = 'active'
""")
row = self.cursor.fetchone()
if row:
stats['average_health'] = round(row['avg_health'] or 5.0, 1)
stats['healthy_dogs'] = row['healthy_count'] or 0
stats['unhealthy_dogs'] = row['unhealthy_count'] or 0
stats['total_dogs'] = row['total_dogs'] or 0
self.cursor.execute("""
SELECT dog_id, name, last_health_score, health_status
FROM dogs
WHERE status = 'active' AND last_health_score < 6
ORDER BY last_health_score ASC
LIMIT 10
""")
stats['dogs_needing_attention'] = []
for row in self.cursor.fetchall():
stats['dogs_needing_attention'].append({
'dog_id': row['dog_id'],
'name': row['name'] or f"Dog #{row['dog_id']}",
'health_score': row['last_health_score'],
'status': row['health_status']
})
return stats
def save_pose_keypoints(self, dog_id: int, keypoints: np.ndarray,
frame_number: int, video_source: str):
"""Save pose keypoints for a dog"""
keypoints_json = json.dumps(keypoints.tolist()) if keypoints is not None else None
self.cursor.execute("""
UPDATE sightings
SET pose_keypoints = ?
WHERE dog_id = ? AND frame_number = ? AND video_source = ?
""", (keypoints_json, dog_id, frame_number, video_source))
self.conn.commit()
def export_training_dataset(self, output_dir: str = "training_dataset") -> Dict:
"""
Export database images to folder structure for fine-tuning
Output structure:
training_dataset/
βββ dog_1/
β βββ img_0000.jpg
β βββ ...
βββ dog_2/
βββ metadata.json
Returns:
dict with export statistics
"""
from pathlib import Path
import json
from datetime import datetime
output_path = Path(output_dir)
output_path.mkdir(parents=True, exist_ok=True)
# Get all active dogs
dogs_df = self.get_all_dogs(active_only=True)
if dogs_df.empty:
return {
'success': False,
'message': 'No dogs in database',
'total_dogs': 0,
'total_images': 0
}
total_images = 0
export_info = []
for _, dog in dogs_df.iterrows():
dog_id = dog['dog_id']
dog_name = dog['name'] or f"dog_{dog_id}"
# Sanitize folder name (remove special characters)
safe_name = "".join(c for c in dog_name if c.isalnum() or c in ('_', '-'))
# Create folder for this dog
dog_folder = output_path / safe_name
dog_folder.mkdir(exist_ok=True)
# Get all non-discarded images
images = self.get_dog_images(
dog_id=dog_id,
validated_only=False,
include_discarded=False
)
if not images:
print(f"Warning: Dog {dog_id} has no images")
continue
# Save each image as JPG
for idx, img_data in enumerate(images):
image = img_data['image'] # OpenCV array from BLOB
filename = f"img_{idx:04d}.jpg"
filepath = dog_folder / filename
# Write to disk
success = cv2.imwrite(str(filepath), image)
if not success:
print(f"Warning: Failed to write {filepath}")
total_images += len(images)
export_info.append({
'dog_id': dog_id,
'name': dog_name,
'folder_name': safe_name,
'image_count': len(images),
'folder': str(dog_folder)
})
print(f"Exported {len(images)} images for {dog_name}")
# Create metadata file
metadata = {
'export_date': datetime.now().isoformat(),
'total_dogs': len(dogs_df),
'total_images': total_images,
'output_directory': str(output_path),
'dogs': export_info
}
metadata_path = output_path / 'metadata.json'
with open(metadata_path, 'w') as f:
json.dump(metadata, f, indent=2)
print(f"\nExport complete: {len(dogs_df)} dogs, {total_images} images")
print(f"Location: {output_path}")
return {
'success': True,
'total_dogs': len(dogs_df),
'total_images': total_images,
'output_path': str(output_path),
'dogs': export_info
}
|