Stray_Dogs / tracking.py
mustafa2ak's picture
Update tracking.py
4024d65 verified
raw
history blame
7.09 kB
import numpy as np
from typing import List, Optional, Tuple
from scipy.optimize import linear_sum_assignment
from collections import deque
import uuid
from detection import Detection # Add this line
class Track:
"""Simple track for a single dog"""
def __init__(self, detection: Detection, track_id: Optional[int] = None):
"""Initialize track from first detection"""
self.track_id = track_id if track_id else self._generate_id()
self.bbox = detection.bbox
self.detections = [detection]
self.confidence = detection.confidence
# Track state
self.age = 1
self.time_since_update = 0
self.state = 'tentative' # tentative -> confirmed -> deleted
self.hits = 1
# Store center points for trajectory
cx = (self.bbox[0] + self.bbox[2]) / 2
cy = (self.bbox[1] + self.bbox[3]) / 2
self.trajectory = deque(maxlen=30)
self.trajectory.append((cx, cy))
def _generate_id(self) -> int:
"""Generate unique track ID"""
return int(uuid.uuid4().int % 100000)
def predict(self):
"""Simple prediction - just use last position"""
self.age += 1
self.time_since_update += 1
def update(self, detection: Detection):
"""Update track with new detection"""
self.bbox = detection.bbox
self.detections.append(detection)
self.confidence = detection.confidence
self.hits += 1
self.time_since_update = 0
# Update trajectory
cx = (self.bbox[0] + self.bbox[2]) / 2
cy = (self.bbox[1] + self.bbox[3]) / 2
self.trajectory.append((cx, cy))
# Confirm track after 3 hits
if self.state == 'tentative' and self.hits >= 3:
self.state = 'confirmed'
# Keep only recent detections to save memory
if len(self.detections) > 10:
self.detections = self.detections[-10:]
def mark_missed(self):
"""Mark track as missed in current frame"""
if self.state == 'confirmed' and self.time_since_update > 15:
self.state = 'deleted'
class SimpleTracker:
"""
Simplified ByteTrack - IoU-based tracking
Robust and proven approach without complexity
"""
def __init__(self,
match_threshold: float = 0.5,
track_buffer: int = 30):
"""
Initialize tracker
Args:
match_threshold: IoU threshold for matching (0.5 works well)
track_buffer: Frames to keep lost tracks
"""
self.match_threshold = match_threshold
self.track_buffer = track_buffer
self.tracks: List[Track] = []
self.track_id_count = 1
def update(self, detections: List[Detection]) -> List[Track]:
"""
Update tracks with new detections
Args:
detections: List of detections from current frame
Returns:
List of active tracks
"""
# Predict existing tracks
for track in self.tracks:
track.predict()
# Get active tracks
active_tracks = [t for t in self.tracks if t.state != 'deleted']
if len(detections) > 0 and len(active_tracks) > 0:
# Calculate IoU matrix
iou_matrix = self._calculate_iou_matrix(active_tracks, detections)
# Hungarian matching
matched, unmatched_tracks, unmatched_dets = self._associate(
iou_matrix, self.match_threshold
)
# Update matched tracks
for t_idx, d_idx in matched:
active_tracks[t_idx].update(detections[d_idx])
# Mark unmatched tracks as missed
for t_idx in unmatched_tracks:
active_tracks[t_idx].mark_missed()
# Create new tracks for unmatched detections
for d_idx in unmatched_dets:
new_track = Track(detections[d_idx], self.track_id_count)
self.track_id_count += 1
self.tracks.append(new_track)
elif len(detections) > 0:
# No existing tracks - create new ones
for detection in detections:
new_track = Track(detection, self.track_id_count)
self.track_id_count += 1
self.tracks.append(new_track)
else:
# No detections - mark all as missed
for track in active_tracks:
track.mark_missed()
# Remove deleted tracks
self.tracks = [t for t in self.tracks if t.state != 'deleted']
# Return confirmed tracks
return [t for t in self.tracks if t.state == 'confirmed']
def _calculate_iou_matrix(self, tracks: List[Track],
detections: List[Detection]) -> np.ndarray:
"""Calculate IoU between all tracks and detections"""
matrix = np.zeros((len(tracks), len(detections)))
for t_idx, track in enumerate(tracks):
for d_idx, detection in enumerate(detections):
matrix[t_idx, d_idx] = self._iou(track.bbox, detection.bbox)
return matrix
def _iou(self, bbox1: List[float], bbox2: List[float]) -> float:
"""Calculate Intersection over Union"""
x1 = max(bbox1[0], bbox2[0])
y1 = max(bbox1[1], bbox2[1])
x2 = min(bbox1[2], bbox2[2])
y2 = min(bbox1[3], bbox2[3])
if x2 < x1 or y2 < y1:
return 0.0
intersection = (x2 - x1) * (y2 - y1)
area1 = (bbox1[2] - bbox1[0]) * (bbox1[3] - bbox1[1])
area2 = (bbox2[2] - bbox2[0]) * (bbox2[3] - bbox2[1])
union = area1 + area2 - intersection
return intersection / union if union > 0 else 0.0
def _associate(self, iou_matrix: np.ndarray,
threshold: float) -> Tuple[List, List, List]:
"""Hungarian algorithm for optimal assignment"""
matched_indices = []
if iou_matrix.max() >= threshold:
# Convert to cost matrix
cost_matrix = 1 - iou_matrix
row_ind, col_ind = linear_sum_assignment(cost_matrix)
for r, c in zip(row_ind, col_ind):
if iou_matrix[r, c] >= threshold:
matched_indices.append([r, c])
unmatched_tracks = []
unmatched_detections = []
for t in range(iou_matrix.shape[0]):
if t not in [m[0] for m in matched_indices]:
unmatched_tracks.append(t)
for d in range(iou_matrix.shape[1]):
if d not in [m[1] for m in matched_indices]:
unmatched_detections.append(d)
return matched_indices, unmatched_tracks, unmatched_detections