Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
"""
|
| 2 |
-
resnet_dataset_creator.py -
|
| 3 |
-
|
| 4 |
"""
|
| 5 |
import gradio as gr
|
| 6 |
import cv2
|
|
@@ -14,13 +14,14 @@ from typing import List, Dict, Optional, Tuple
|
|
| 14 |
from datetime import datetime
|
| 15 |
from PIL import Image
|
| 16 |
import zipfile
|
|
|
|
| 17 |
# Import required modules
|
| 18 |
from detection import DogDetector
|
| 19 |
from tracking import SimpleTracker
|
| 20 |
-
from reid import SingleModelReID
|
| 21 |
from ultralytics import YOLO
|
| 22 |
|
| 23 |
-
# ========== IMAGE QUALITY ANALYZER ==========
|
| 24 |
class ImageQualityAnalyzer:
|
| 25 |
"""Analyze and score image quality for dataset selection"""
|
| 26 |
|
|
@@ -34,43 +35,34 @@ class ImageQualityAnalyzer:
|
|
| 34 |
}
|
| 35 |
|
| 36 |
def calculate_sharpness(self, image: np.ndarray) -> float:
|
| 37 |
-
"""Calculate image sharpness using Laplacian variance"""
|
| 38 |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 39 |
laplacian = cv2.Laplacian(gray, cv2.CV_64F)
|
| 40 |
return min(100, laplacian.var())
|
| 41 |
|
| 42 |
def calculate_resolution_score(self, image: np.ndarray) -> float:
|
| 43 |
-
"""Score based on image resolution"""
|
| 44 |
h, w = image.shape[:2]
|
| 45 |
pixels = h * w
|
| 46 |
-
# Ideal is 224x224 or larger
|
| 47 |
ideal_pixels = 224 * 224
|
| 48 |
return min(100, (pixels / ideal_pixels) * 100)
|
| 49 |
|
| 50 |
def calculate_brightness_score(self, image: np.ndarray) -> float:
|
| 51 |
-
"""Score image brightness"""
|
| 52 |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 53 |
mean_brightness = np.mean(gray)
|
| 54 |
-
# Ideal brightness is around 127 (middle of 0-255)
|
| 55 |
return 100 - abs(mean_brightness - 127) * 0.78
|
| 56 |
|
| 57 |
def calculate_contrast_score(self, image: np.ndarray) -> float:
|
| 58 |
-
"""Score image contrast"""
|
| 59 |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 60 |
contrast = gray.std()
|
| 61 |
return min(100, contrast * 2)
|
| 62 |
|
| 63 |
def detect_occlusion(self, bbox: List[float], frame_shape: Tuple) -> float:
|
| 64 |
-
"""Check if dog is fully visible"""
|
| 65 |
x1, y1, x2, y2 = bbox
|
| 66 |
h, w = frame_shape[:2]
|
| 67 |
|
| 68 |
-
# Check if bbox touches frame edges
|
| 69 |
edge_penalty = 0
|
| 70 |
if x1 <= 5 or y1 <= 5 or x2 >= w-5 or y2 >= h-5:
|
| 71 |
edge_penalty = 30
|
| 72 |
|
| 73 |
-
# Check bbox aspect ratio (dogs shouldn't be too thin)
|
| 74 |
aspect = (x2 - x1) / (y2 - y1)
|
| 75 |
if aspect < 0.3 or aspect > 3:
|
| 76 |
edge_penalty += 20
|
|
@@ -79,7 +71,6 @@ class ImageQualityAnalyzer:
|
|
| 79 |
|
| 80 |
def calculate_overall_quality(self, image: np.ndarray, bbox: List[float],
|
| 81 |
frame_shape: Tuple) -> float:
|
| 82 |
-
"""Calculate comprehensive quality score"""
|
| 83 |
scores = {
|
| 84 |
'sharpness': self.calculate_sharpness(image),
|
| 85 |
'resolution': self.calculate_resolution_score(image),
|
|
@@ -88,28 +79,19 @@ class ImageQualityAnalyzer:
|
|
| 88 |
'occlusion': self.detect_occlusion(bbox, frame_shape)
|
| 89 |
}
|
| 90 |
|
| 91 |
-
# Weighted average
|
| 92 |
total = sum(scores[k] * self.quality_weights[k] for k in scores)
|
| 93 |
return total
|
| 94 |
|
| 95 |
-
# ========== SMART IMAGE SELECTOR ==========
|
| 96 |
class SmartImageSelector:
|
| 97 |
"""Intelligently select best images based on quality and diversity"""
|
| 98 |
|
| 99 |
def __init__(self):
|
| 100 |
self.quality_analyzer = ImageQualityAnalyzer()
|
| 101 |
-
self.min_temporal_distance = 10
|
| 102 |
|
| 103 |
def select_best_images(self, dog_data: List[Dict], max_images: int = 30,
|
| 104 |
video_fps: float = 30) -> List[Dict]:
|
| 105 |
-
"""
|
| 106 |
-
Select best images considering:
|
| 107 |
-
- Image quality
|
| 108 |
-
- Temporal diversity (not too close in time)
|
| 109 |
-
- Pose diversity
|
| 110 |
-
- Movement patterns
|
| 111 |
-
"""
|
| 112 |
-
# Always calculate quality scores first
|
| 113 |
for item in dog_data:
|
| 114 |
item['quality_score'] = self.quality_analyzer.calculate_overall_quality(
|
| 115 |
item['crop'], item['bbox'], item['frame'].shape
|
|
@@ -118,18 +100,15 @@ class SmartImageSelector:
|
|
| 118 |
if len(dog_data) <= max_images:
|
| 119 |
return dog_data
|
| 120 |
|
| 121 |
-
# Sort by quality
|
| 122 |
dog_data.sort(key=lambda x: x['quality_score'], reverse=True)
|
| 123 |
|
| 124 |
selected = []
|
| 125 |
selected_frames = set()
|
| 126 |
-
selected_indices = set()
|
| 127 |
|
| 128 |
for idx, item in enumerate(dog_data):
|
| 129 |
-
# Check temporal diversity
|
| 130 |
frame_num = item['frame_num']
|
| 131 |
|
| 132 |
-
# Don't select images too close together
|
| 133 |
too_close = any(
|
| 134 |
abs(frame_num - f) < self.min_temporal_distance
|
| 135 |
for f in selected_frames
|
|
@@ -140,7 +119,6 @@ class SmartImageSelector:
|
|
| 140 |
selected_frames.add(frame_num)
|
| 141 |
selected_indices.add(idx)
|
| 142 |
|
| 143 |
-
# If we don't have enough, relax temporal constraint
|
| 144 |
if len(selected) < max_images:
|
| 145 |
for idx, item in enumerate(dog_data):
|
| 146 |
if idx not in selected_indices and len(selected) < max_images:
|
|
@@ -149,111 +127,20 @@ class SmartImageSelector:
|
|
| 149 |
|
| 150 |
return selected[:max_images]
|
| 151 |
|
| 152 |
-
# ==========
|
| 153 |
-
class
|
| 154 |
-
"""
|
| 155 |
-
|
| 156 |
-
def __init__(self):
|
| 157 |
-
self.pose_model = None
|
| 158 |
-
try:
|
| 159 |
-
self.pose_model = YOLO('yolov8m-pose.pt')
|
| 160 |
-
if torch.cuda.is_available():
|
| 161 |
-
self.pose_model.to('cuda')
|
| 162 |
-
print("Pose model loaded for head extraction")
|
| 163 |
-
except:
|
| 164 |
-
print("Using geometric head extraction")
|
| 165 |
|
| 166 |
def extract_head(self, frame: np.ndarray, bbox: List[float]) -> Optional[np.ndarray]:
|
| 167 |
-
"""Extract head with best available method"""
|
| 168 |
x1, y1, x2, y2 = map(int, bbox)
|
| 169 |
dog_crop = frame[y1:y2, x1:x2]
|
| 170 |
|
| 171 |
if dog_crop.size == 0:
|
| 172 |
return None
|
| 173 |
|
| 174 |
-
# Try pose-based first
|
| 175 |
-
if self.pose_model:
|
| 176 |
-
head = self._extract_with_pose(dog_crop)
|
| 177 |
-
if head is not None:
|
| 178 |
-
return head
|
| 179 |
-
|
| 180 |
-
# Fallback to intelligent geometric
|
| 181 |
-
return self._extract_geometric_smart(dog_crop)
|
| 182 |
-
|
| 183 |
-
def _extract_with_pose(self, dog_crop: np.ndarray) -> Optional[np.ndarray]:
|
| 184 |
-
"""Extract using pose keypoints"""
|
| 185 |
-
try:
|
| 186 |
-
results = self.pose_model(dog_crop, conf=0.3, verbose=False)
|
| 187 |
-
|
| 188 |
-
if results and len(results) > 0 and hasattr(results[0], 'keypoints'):
|
| 189 |
-
keypoints = results[0].keypoints
|
| 190 |
-
if keypoints is not None and keypoints.xy is not None:
|
| 191 |
-
kpts = keypoints.xy[0].cpu().numpy()
|
| 192 |
-
|
| 193 |
-
# Get head keypoints (nose, eyes, ears)
|
| 194 |
-
head_indices = [0, 1, 2, 3, 4] # nose, eyes, ears
|
| 195 |
-
head_points = []
|
| 196 |
-
|
| 197 |
-
for idx in head_indices:
|
| 198 |
-
if idx < len(kpts) and kpts[idx][0] > 0:
|
| 199 |
-
head_points.append(kpts[idx])
|
| 200 |
-
|
| 201 |
-
if len(head_points) >= 3:
|
| 202 |
-
head_points = np.array(head_points)
|
| 203 |
-
|
| 204 |
-
# Calculate bounding box around head points
|
| 205 |
-
padding = 35
|
| 206 |
-
min_x = max(0, int(np.min(head_points[:, 0]) - padding))
|
| 207 |
-
min_y = max(0, int(np.min(head_points[:, 1]) - padding))
|
| 208 |
-
max_x = min(dog_crop.shape[1], int(np.max(head_points[:, 0]) + padding))
|
| 209 |
-
max_y = min(dog_crop.shape[0], int(np.max(head_points[:, 1]) + padding * 1.3))
|
| 210 |
-
|
| 211 |
-
head_crop = dog_crop[min_y:max_y, min_x:max_x]
|
| 212 |
-
if head_crop.size > 0:
|
| 213 |
-
# Resize to standard size
|
| 214 |
-
head_crop = cv2.resize(head_crop, (128, 128))
|
| 215 |
-
return head_crop
|
| 216 |
-
except:
|
| 217 |
-
pass
|
| 218 |
-
|
| 219 |
-
return None
|
| 220 |
-
|
| 221 |
-
def _extract_geometric_smart(self, dog_crop: np.ndarray) -> Optional[np.ndarray]:
|
| 222 |
-
"""Smart geometric extraction based on image analysis"""
|
| 223 |
h, w = dog_crop.shape[:2]
|
| 224 |
|
| 225 |
-
#
|
| 226 |
-
gray = cv2.cvtColor(dog_crop, cv2.COLOR_BGR2GRAY)
|
| 227 |
-
|
| 228 |
-
# Use edge detection to find features
|
| 229 |
-
edges = cv2.Canny(gray, 50, 150)
|
| 230 |
-
|
| 231 |
-
# Find feature concentration (likely head area)
|
| 232 |
-
kernel_size = max(1, h // 10)
|
| 233 |
-
kernel = np.ones((kernel_size, kernel_size), np.float32)
|
| 234 |
-
edge_density = cv2.filter2D(edges, -1, kernel)
|
| 235 |
-
|
| 236 |
-
# Find peak density area
|
| 237 |
-
max_loc = np.unravel_index(np.argmax(edge_density[:h//2, :]), edge_density[:h//2, :].shape)
|
| 238 |
-
|
| 239 |
-
# Extract around peak area
|
| 240 |
-
center_y = max_loc[0]
|
| 241 |
-
center_x = max_loc[1]
|
| 242 |
-
|
| 243 |
-
# Define head region
|
| 244 |
-
head_size = int(min(h, w) * 0.4)
|
| 245 |
-
y1 = max(0, center_y - head_size // 2)
|
| 246 |
-
y2 = min(h, y1 + head_size)
|
| 247 |
-
x1 = max(0, center_x - head_size // 2)
|
| 248 |
-
x2 = min(w, x1 + head_size)
|
| 249 |
-
|
| 250 |
-
head_crop = dog_crop[y1:y2, x1:x2]
|
| 251 |
-
|
| 252 |
-
if head_crop.size > 0:
|
| 253 |
-
head_crop = cv2.resize(head_crop, (128, 128))
|
| 254 |
-
return head_crop
|
| 255 |
-
|
| 256 |
-
# Final fallback - top portion
|
| 257 |
head_height = int(h * 0.4)
|
| 258 |
head_crop = dog_crop[:head_height, :]
|
| 259 |
|
|
@@ -263,94 +150,114 @@ class AdvancedHeadExtractor:
|
|
| 263 |
|
| 264 |
return None
|
| 265 |
|
| 266 |
-
# ========== MAIN DATASET CREATOR ==========
|
| 267 |
class ResNetDatasetCreator:
|
| 268 |
-
"""Main application
|
| 269 |
|
| 270 |
def __init__(self):
|
|
|
|
| 271 |
self.temp_dir = Path("temp_dataset")
|
| 272 |
self.final_dir = Path("resnet_finetune_dataset")
|
| 273 |
self.database_dir = Path("permanent_database")
|
| 274 |
|
| 275 |
-
# Components
|
| 276 |
self.detector = DogDetector(device='cuda' if torch.cuda.is_available() else 'cpu')
|
| 277 |
self.tracker = SimpleTracker()
|
| 278 |
self.reid = SingleModelReID(device='cuda' if torch.cuda.is_available() else 'cpu')
|
| 279 |
-
self.head_extractor =
|
| 280 |
self.image_selector = SmartImageSelector()
|
| 281 |
|
| 282 |
-
# Session data
|
|
|
|
| 283 |
self.current_session = None
|
| 284 |
-
self.
|
|
|
|
| 285 |
|
| 286 |
# Create directories
|
| 287 |
self.temp_dir.mkdir(exist_ok=True)
|
| 288 |
self.final_dir.mkdir(exist_ok=True)
|
| 289 |
self.database_dir.mkdir(exist_ok=True)
|
| 290 |
|
| 291 |
-
# Load
|
| 292 |
-
self.
|
| 293 |
|
| 294 |
-
def
|
| 295 |
-
"""Load
|
| 296 |
db_file = self.database_dir / "database.json"
|
| 297 |
if db_file.exists():
|
| 298 |
with open(db_file, 'r') as f:
|
| 299 |
data = json.load(f)
|
| 300 |
-
self.
|
| 301 |
-
print(f"Loaded {len(self.
|
| 302 |
|
| 303 |
-
def
|
| 304 |
-
"""Save
|
|
|
|
|
|
|
|
|
|
|
|
|
| 305 |
db_file = self.database_dir / "database.json"
|
| 306 |
data = {
|
| 307 |
-
'dogs': {str(k): v for k, v in self.
|
| 308 |
'last_updated': datetime.now().isoformat()
|
| 309 |
}
|
| 310 |
with open(db_file, 'w') as f:
|
| 311 |
json.dump(data, f, indent=2)
|
| 312 |
|
| 313 |
-
#
|
| 314 |
-
for dog_id in self.
|
| 315 |
src_dir = self.temp_dir / f"dog_{dog_id:03d}"
|
| 316 |
dst_dir = self.database_dir / f"dog_{dog_id:03d}"
|
| 317 |
if src_dir.exists():
|
| 318 |
if dst_dir.exists():
|
| 319 |
shutil.rmtree(dst_dir)
|
| 320 |
shutil.copytree(src_dir, dst_dir)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 321 |
|
| 322 |
-
def
|
| 323 |
-
"""Clear
|
| 324 |
if self.database_dir.exists():
|
| 325 |
shutil.rmtree(self.database_dir)
|
| 326 |
-
self.database_dir.mkdir(
|
| 327 |
-
self.
|
| 328 |
-
|
| 329 |
-
print("Database cleared")
|
| 330 |
|
| 331 |
def process_video(self, video_path: str, reid_threshold: float,
|
| 332 |
max_images_per_dog: int, sample_rate: int) -> Dict:
|
| 333 |
-
"""
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
shutil.rmtree(self.temp_dir)
|
| 344 |
-
self.temp_dir.mkdir()
|
| 345 |
|
| 346 |
# Set ReID threshold
|
| 347 |
self.reid.set_all_thresholds(reid_threshold)
|
| 348 |
|
| 349 |
-
# Reset ReID session
|
| 350 |
-
self.reid.reset_all()
|
| 351 |
-
|
| 352 |
# Storage for dog data
|
| 353 |
-
dog_data = {}
|
| 354 |
|
| 355 |
# Open video
|
| 356 |
cap = cv2.VideoCapture(video_path)
|
|
@@ -380,7 +287,7 @@ class ResNetDatasetCreator:
|
|
| 380 |
dog_id = results['ResNet50']['dog_id']
|
| 381 |
confidence = results['ResNet50']['confidence']
|
| 382 |
|
| 383 |
-
if dog_id > 0 and confidence > 0.3:
|
| 384 |
# Get best detection
|
| 385 |
detection = None
|
| 386 |
for det in reversed(track.detections):
|
|
@@ -389,11 +296,9 @@ class ResNetDatasetCreator:
|
|
| 389 |
break
|
| 390 |
|
| 391 |
if detection:
|
| 392 |
-
# Initialize storage
|
| 393 |
if dog_id not in dog_data:
|
| 394 |
dog_data[dog_id] = []
|
| 395 |
|
| 396 |
-
# Store frame data
|
| 397 |
dog_data[dog_id].append({
|
| 398 |
'frame': frame.copy(),
|
| 399 |
'crop': detection.image_crop,
|
|
@@ -420,12 +325,11 @@ class ResNetDatasetCreator:
|
|
| 420 |
new_dogs = {}
|
| 421 |
|
| 422 |
for dog_id, images in dog_data.items():
|
| 423 |
-
# Use smart selector
|
| 424 |
selected = self.image_selector.select_best_images(
|
| 425 |
images, max_images_per_dog, fps
|
| 426 |
)
|
| 427 |
|
| 428 |
-
# Save to temp directory
|
| 429 |
dog_dir = self.temp_dir / f"dog_{dog_id:03d}"
|
| 430 |
dog_dir.mkdir(exist_ok=True)
|
| 431 |
(dog_dir / 'full').mkdir(exist_ok=True)
|
|
@@ -447,15 +351,15 @@ class ResNetDatasetCreator:
|
|
| 447 |
|
| 448 |
total_images += saved_count
|
| 449 |
|
| 450 |
-
# Store
|
| 451 |
new_dogs[dog_id] = {
|
| 452 |
'num_images': saved_count,
|
| 453 |
'avg_confidence': np.mean([d['reid_confidence'] for d in selected]),
|
| 454 |
'quality_scores': [d['quality_score'] for d in selected]
|
| 455 |
}
|
| 456 |
|
| 457 |
-
# Update
|
| 458 |
-
self.
|
| 459 |
|
| 460 |
# Save session info
|
| 461 |
self.current_session = {
|
|
@@ -467,18 +371,18 @@ class ResNetDatasetCreator:
|
|
| 467 |
'dogs': {str(k): v for k, v in new_dogs.items()}
|
| 468 |
}
|
| 469 |
|
| 470 |
-
# Save metadata
|
| 471 |
with open(self.temp_dir / 'session.json', 'w') as f:
|
| 472 |
json.dump(self.current_session, f, indent=2)
|
| 473 |
|
| 474 |
yield {'status': 'complete', 'session': self.current_session}
|
| 475 |
|
| 476 |
-
def get_dog_images(self, dog_id: int) -> List:
|
| 477 |
-
"""Get images for verification
|
| 478 |
-
|
| 479 |
-
dog_dir = self.temp_dir / f"dog_{dog_id:03d}"
|
| 480 |
-
if not dog_dir.exists():
|
| 481 |
dog_dir = self.database_dir / f"dog_{dog_id:03d}"
|
|
|
|
|
|
|
| 482 |
|
| 483 |
full_dir = dog_dir / 'full'
|
| 484 |
if not full_dir.exists():
|
|
@@ -493,69 +397,60 @@ class ResNetDatasetCreator:
|
|
| 493 |
|
| 494 |
return images
|
| 495 |
|
| 496 |
-
def
|
| 497 |
-
"""Remove
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
head_dir = dog_dir / 'head'
|
| 506 |
-
|
| 507 |
-
image_files = sorted(list(full_dir.glob("*.jpg")))
|
| 508 |
-
|
| 509 |
-
# Extract actual indices from gallery selection
|
| 510 |
-
indices_to_remove = []
|
| 511 |
-
if isinstance(image_indices, list):
|
| 512 |
-
for item in image_indices:
|
| 513 |
-
if isinstance(item, (list, tuple)) and len(item) > 0:
|
| 514 |
-
indices_to_remove.append(item[0])
|
| 515 |
-
elif isinstance(item, int):
|
| 516 |
-
indices_to_remove.append(item)
|
| 517 |
-
|
| 518 |
-
for idx in indices_to_remove:
|
| 519 |
-
if 0 <= idx < len(image_files):
|
| 520 |
-
# Remove full image
|
| 521 |
-
image_files[idx].unlink(missing_ok=True)
|
| 522 |
-
# Remove corresponding head
|
| 523 |
-
head_file = head_dir / image_files[idx].name
|
| 524 |
-
if head_file.exists():
|
| 525 |
-
head_file.unlink()
|
| 526 |
-
|
| 527 |
-
def delete_dog(self, dog_id: int):
|
| 528 |
-
"""Delete entire dog folder from both temp and database"""
|
| 529 |
-
for base_dir in [self.temp_dir, self.database_dir]:
|
| 530 |
-
dog_dir = base_dir / f"dog_{dog_id:03d}"
|
| 531 |
-
if dog_dir.exists():
|
| 532 |
-
shutil.rmtree(dog_dir)
|
| 533 |
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 537 |
|
| 538 |
-
def
|
| 539 |
-
"""
|
| 540 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 541 |
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
|
|
|
| 546 |
if self.final_dir.exists():
|
| 547 |
shutil.rmtree(self.final_dir)
|
| 548 |
self.final_dir.mkdir()
|
| 549 |
|
| 550 |
-
#
|
| 551 |
all_dog_dirs = []
|
| 552 |
|
| 553 |
-
#
|
| 554 |
for d in self.temp_dir.iterdir():
|
| 555 |
if d.is_dir() and d.name.startswith('dog_'):
|
| 556 |
all_dog_dirs.append(d)
|
| 557 |
|
| 558 |
-
#
|
| 559 |
temp_dogs = {d.name for d in all_dog_dirs}
|
| 560 |
for d in self.database_dir.iterdir():
|
| 561 |
if d.is_dir() and d.name.startswith('dog_') and d.name not in temp_dogs:
|
|
@@ -568,50 +463,36 @@ class ResNetDatasetCreator:
|
|
| 568 |
if not (dog_dir / 'full').exists():
|
| 569 |
continue
|
| 570 |
|
| 571 |
-
# Create final directory
|
| 572 |
final_dog_dir = self.final_dir / f"dog_{final_id:03d}"
|
| 573 |
shutil.copytree(dog_dir, final_dog_dir)
|
| 574 |
|
| 575 |
-
# Collect metadata
|
| 576 |
for img_path in (final_dog_dir / 'full').glob("*.jpg"):
|
| 577 |
head_path = final_dog_dir / 'head' / img_path.name
|
| 578 |
data_entries.append({
|
| 579 |
'dog_id': final_id,
|
| 580 |
'image_path': str(img_path.relative_to(self.final_dir)),
|
| 581 |
'head_path': str(head_path.relative_to(self.final_dir)) if head_path.exists() else None,
|
| 582 |
-
'class': final_id
|
| 583 |
})
|
| 584 |
|
| 585 |
final_id += 1
|
| 586 |
|
| 587 |
-
if format_type
|
| 588 |
-
# Create train/val split
|
| 589 |
df = pd.DataFrame(data_entries)
|
| 590 |
|
| 591 |
-
if len(df) >
|
| 592 |
-
# Stratified split by dog_id
|
| 593 |
from sklearn.model_selection import train_test_split
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
train_df, val_df = train_test_split(
|
| 598 |
-
df, test_size=0.2, stratify=df['dog_id'], random_state=42
|
| 599 |
-
)
|
| 600 |
-
else:
|
| 601 |
-
train_df = df
|
| 602 |
-
val_df = pd.DataFrame()
|
| 603 |
-
|
| 604 |
-
# Save CSV files
|
| 605 |
train_df.to_csv(self.final_dir / 'train.csv', index=False)
|
| 606 |
-
|
| 607 |
-
|
|
|
|
| 608 |
|
| 609 |
-
# Create metadata
|
| 610 |
metadata = {
|
| 611 |
'total_dogs': final_id - 1,
|
| 612 |
'total_images': len(data_entries),
|
| 613 |
-
'train_images': len(train_df) if format_type in ['csv', 'both'] and 'train_df' in locals() else len(data_entries),
|
| 614 |
-
'val_images': len(val_df) if format_type in ['csv', 'both'] and 'val_df' in locals() else 0,
|
| 615 |
'format': format_type,
|
| 616 |
'created': datetime.now().isoformat()
|
| 617 |
}
|
|
@@ -619,7 +500,7 @@ class ResNetDatasetCreator:
|
|
| 619 |
with open(self.final_dir / 'metadata.json', 'w') as f:
|
| 620 |
json.dump(metadata, f, indent=2)
|
| 621 |
|
| 622 |
-
# Create zip
|
| 623 |
zip_path = self.final_dir.parent / f"resnet_dataset_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip"
|
| 624 |
with zipfile.ZipFile(zip_path, 'w') as zipf:
|
| 625 |
for file_path in self.final_dir.rglob('*'):
|
|
@@ -628,29 +509,30 @@ class ResNetDatasetCreator:
|
|
| 628 |
return str(zip_path)
|
| 629 |
|
| 630 |
def create_interface(self):
|
| 631 |
-
"""Create Gradio interface"""
|
| 632 |
with gr.Blocks(
|
| 633 |
title="ResNet Fine-tuning Dataset Creator",
|
| 634 |
theme=gr.themes.Soft()
|
| 635 |
) as app:
|
| 636 |
gr.Markdown("""
|
| 637 |
-
# 🎯 ResNet Fine-tuning Dataset Creator
|
| 638 |
-
###
|
| 639 |
""")
|
| 640 |
|
| 641 |
-
#
|
| 642 |
processing_state = gr.State(None)
|
|
|
|
| 643 |
|
| 644 |
-
# Step 1: Process Video
|
| 645 |
with gr.Tabs() as tabs:
|
|
|
|
| 646 |
with gr.Tab("📹 Step 1: Process Video", id=0):
|
| 647 |
with gr.Row():
|
| 648 |
video_input = gr.Video(label="Upload Video")
|
| 649 |
with gr.Column():
|
| 650 |
reid_threshold = gr.Slider(
|
| 651 |
-
0.
|
| 652 |
label="ReID Threshold",
|
| 653 |
-
info="Lower = More lenient
|
| 654 |
)
|
| 655 |
max_images = gr.Slider(
|
| 656 |
10, 50, 30, step=5,
|
|
@@ -659,353 +541,248 @@ class ResNetDatasetCreator:
|
|
| 659 |
sample_rate = gr.Slider(
|
| 660 |
1, 5, 2, step=1,
|
| 661 |
label="Sample Rate",
|
| 662 |
-
info="Process every Nth frame
|
| 663 |
)
|
| 664 |
|
| 665 |
process_btn = gr.Button("🚀 Process Video", variant="primary", size="lg")
|
| 666 |
|
| 667 |
-
# Results display in formatted table
|
| 668 |
with gr.Column():
|
| 669 |
progress_bar = gr.Textbox(label="Progress", interactive=False)
|
| 670 |
-
results_display = gr.HTML(label="Processing Results"
|
| 671 |
-
save_status = gr.Textbox(label="Save Status", interactive=False, visible=False)
|
| 672 |
|
| 673 |
with gr.Row():
|
| 674 |
-
save_proceed_btn = gr.Button(
|
| 675 |
-
"✅ Save Results & Proceed to Verification",
|
| 676 |
-
variant="primary",
|
| 677 |
-
size="lg",
|
| 678 |
-
visible=False
|
| 679 |
-
)
|
| 680 |
clear_btn = gr.Button(
|
| 681 |
-
"🔄 Clear
|
| 682 |
variant="secondary",
|
|
|
|
| 683 |
visible=False
|
| 684 |
)
|
| 685 |
|
| 686 |
-
def format_results_table(session_data):
|
| 687 |
-
"""Format session data as HTML table"""
|
| 688 |
-
if not session_data:
|
| 689 |
-
return ""
|
| 690 |
-
|
| 691 |
-
html = """
|
| 692 |
-
<div style="padding: 20px; background-color: #f8f9fa; border-radius: 10px;">
|
| 693 |
-
<h3 style="color: #2c3e50;">📊 Processing Results</h3>
|
| 694 |
-
<table style="width: 100%; border-collapse: collapse; margin: 20px 0;">
|
| 695 |
-
<tr style="background-color: #3498db; color: white;">
|
| 696 |
-
<td style="padding: 10px; border: 1px solid #ddd;"><b>Metric</b></td>
|
| 697 |
-
<td style="padding: 10px; border: 1px solid #ddd;"><b>Value</b></td>
|
| 698 |
-
</tr>
|
| 699 |
-
"""
|
| 700 |
-
|
| 701 |
-
# Basic info
|
| 702 |
-
html += f"""
|
| 703 |
-
<tr style="background-color: #ecf0f1;">
|
| 704 |
-
<td style="padding: 10px; border: 1px solid #ddd;">Video File</td>
|
| 705 |
-
<td style="padding: 10px; border: 1px solid #ddd;">{session_data['video'].split('/')[-1]}</td>
|
| 706 |
-
</tr>
|
| 707 |
-
<tr>
|
| 708 |
-
<td style="padding: 10px; border: 1px solid #ddd;">Processing Time</td>
|
| 709 |
-
<td style="padding: 10px; border: 1px solid #ddd;">{session_data['timestamp'].split('T')[1].split('.')[0]}</td>
|
| 710 |
-
</tr>
|
| 711 |
-
<tr style="background-color: #ecf0f1;">
|
| 712 |
-
<td style="padding: 10px; border: 1px solid #ddd;">Number of Dogs Detected</td>
|
| 713 |
-
<td style="padding: 10px; border: 1px solid #ddd;"><b>{session_data['num_dogs']}</b></td>
|
| 714 |
-
</tr>
|
| 715 |
-
<tr>
|
| 716 |
-
<td style="padding: 10px; border: 1px solid #ddd;">Total Images Extracted</td>
|
| 717 |
-
<td style="padding: 10px; border: 1px solid #ddd;"><b>{session_data['total_images']}</b></td>
|
| 718 |
-
</tr>
|
| 719 |
-
<tr style="background-color: #ecf0f1;">
|
| 720 |
-
<td style="padding: 10px; border: 1px solid #ddd;">ReID Threshold Used</td>
|
| 721 |
-
<td style="padding: 10px; border: 1px solid #ddd;">{session_data['reid_threshold']:.2f}</td>
|
| 722 |
-
</tr>
|
| 723 |
-
</table>
|
| 724 |
-
"""
|
| 725 |
-
|
| 726 |
-
# Dog-specific details
|
| 727 |
-
if session_data['dogs']:
|
| 728 |
-
html += """
|
| 729 |
-
<h4 style="color: #2c3e50; margin-top: 20px;">🐕 Dog Details</h4>
|
| 730 |
-
<table style="width: 100%; border-collapse: collapse; margin: 10px 0;">
|
| 731 |
-
<tr style="background-color: #27ae60; color: white;">
|
| 732 |
-
<td style="padding: 10px; border: 1px solid #ddd;"><b>Dog ID</b></td>
|
| 733 |
-
<td style="padding: 10px; border: 1px solid #ddd;"><b>Images</b></td>
|
| 734 |
-
<td style="padding: 10px; border: 1px solid #ddd;"><b>Avg Confidence</b></td>
|
| 735 |
-
<td style="padding: 10px; border: 1px solid #ddd;"><b>Avg Quality</b></td>
|
| 736 |
-
<td style="padding: 10px; border: 1px solid #ddd;"><b>Quality Range</b></td>
|
| 737 |
-
</tr>
|
| 738 |
-
"""
|
| 739 |
-
|
| 740 |
-
for dog_id, dog_info in session_data['dogs'].items():
|
| 741 |
-
avg_quality = np.mean(dog_info['quality_scores'])
|
| 742 |
-
min_quality = min(dog_info['quality_scores'])
|
| 743 |
-
max_quality = max(dog_info['quality_scores'])
|
| 744 |
-
|
| 745 |
-
row_style = "background-color: #ecf0f1;" if int(dog_id) % 2 == 0 else ""
|
| 746 |
-
html += f"""
|
| 747 |
-
<tr style="{row_style}">
|
| 748 |
-
<td style="padding: 10px; border: 1px solid #ddd;">Dog {dog_id}</td>
|
| 749 |
-
<td style="padding: 10px; border: 1px solid #ddd;">{dog_info['num_images']}</td>
|
| 750 |
-
<td style="padding: 10px; border: 1px solid #ddd;">{dog_info['avg_confidence']:.2%}</td>
|
| 751 |
-
<td style="padding: 10px; border: 1px solid #ddd;">{avg_quality:.1f}</td>
|
| 752 |
-
<td style="padding: 10px; border: 1px solid #ddd;">{min_quality:.1f} - {max_quality:.1f}</td>
|
| 753 |
-
</tr>
|
| 754 |
-
"""
|
| 755 |
-
|
| 756 |
-
html += "</table>"
|
| 757 |
-
|
| 758 |
-
html += """
|
| 759 |
-
<div style="margin-top: 20px; padding: 10px; background-color: #d4edda; border-radius: 5px;">
|
| 760 |
-
<p style="margin: 0; color: #155724;">
|
| 761 |
-
✅ <b>Processing Complete!</b> Click "Save Results & Proceed" to continue to verification step.
|
| 762 |
-
</p>
|
| 763 |
-
</div>
|
| 764 |
-
</div>
|
| 765 |
-
"""
|
| 766 |
-
|
| 767 |
-
return html
|
| 768 |
-
|
| 769 |
def process_wrapper(video, threshold, max_img, sample):
|
| 770 |
-
"""Process
|
| 771 |
if not video:
|
| 772 |
-
return None, "", "Please upload a video", gr.update(visible=False)
|
| 773 |
|
| 774 |
-
# Process video
|
| 775 |
for update in self.process_video(video, threshold, int(max_img), int(sample)):
|
| 776 |
if 'progress' in update:
|
| 777 |
-
yield None, "", update['status'], gr.update(visible=False)
|
| 778 |
else:
|
| 779 |
-
#
|
| 780 |
-
|
| 781 |
-
|
| 782 |
-
|
| 783 |
-
|
| 784 |
-
|
| 785 |
-
|
| 786 |
-
|
| 787 |
-
|
| 788 |
-
|
| 789 |
-
|
| 790 |
-
|
| 791 |
-
|
| 792 |
-
dog_count = len(self.processed_dogs)
|
| 793 |
-
img_count = sum(d.get('num_images', 0) for d in self.processed_dogs.values())
|
| 794 |
-
|
| 795 |
-
message = f"""✅ Results saved successfully to database!
|
| 796 |
-
|
| 797 |
-
📊 Summary:
|
| 798 |
-
- Total dogs in database: {dog_count}
|
| 799 |
-
- Total images: {img_count}
|
| 800 |
-
- Data location: {self.database_dir}
|
| 801 |
-
|
| 802 |
-
You can now proceed to Step 2: Verify & Clean
|
| 803 |
-
Click the 'Refresh List' button in Step 2 to load all dogs."""
|
| 804 |
-
|
| 805 |
-
return message, gr.update(visible=True)
|
| 806 |
-
return "❌ No results to save. Please process a video first.", gr.update(visible=False)
|
| 807 |
|
| 808 |
-
def
|
| 809 |
-
"""Clear
|
| 810 |
-
self.
|
| 811 |
-
|
| 812 |
-
shutil.rmtree(self.temp_dir)
|
| 813 |
-
self.temp_dir.mkdir()
|
| 814 |
-
return None, "", "", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 815 |
|
| 816 |
process_btn.click(
|
| 817 |
process_wrapper,
|
| 818 |
inputs=[video_input, reid_threshold, max_images, sample_rate],
|
| 819 |
-
outputs=[processing_state, results_display, progress_bar,
|
| 820 |
-
)
|
| 821 |
-
|
| 822 |
-
save_proceed_btn.click(
|
| 823 |
-
save_and_proceed,
|
| 824 |
-
outputs=[save_status, save_status]
|
| 825 |
)
|
| 826 |
|
| 827 |
clear_btn.click(
|
| 828 |
-
|
| 829 |
-
outputs=[processing_state, results_display, progress_bar,
|
| 830 |
)
|
| 831 |
|
| 832 |
-
#
|
| 833 |
with gr.Tab("✅ Step 2: Verify & Clean", id=1):
|
| 834 |
-
gr.Markdown("
|
| 835 |
-
|
| 836 |
-
|
| 837 |
-
|
| 838 |
-
label="Select Dog",
|
| 839 |
-
choices=[],
|
| 840 |
-
interactive=True
|
| 841 |
-
)
|
| 842 |
|
| 843 |
-
# Add diagnostic and management buttons
|
| 844 |
with gr.Row():
|
| 845 |
-
|
| 846 |
-
|
| 847 |
-
|
| 848 |
-
|
| 849 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 850 |
|
| 851 |
image_gallery = gr.Gallery(
|
| 852 |
-
label="
|
| 853 |
show_label=True,
|
| 854 |
-
elem_id="gallery",
|
| 855 |
columns=4,
|
| 856 |
rows=3,
|
| 857 |
object_fit="contain",
|
| 858 |
height="auto",
|
| 859 |
-
|
| 860 |
-
|
| 861 |
)
|
| 862 |
|
| 863 |
with gr.Row():
|
| 864 |
-
|
| 865 |
-
label="Selected
|
| 866 |
-
|
| 867 |
-
interactive=
|
| 868 |
)
|
| 869 |
remove_selected_btn = gr.Button("🗑 Remove Selected Images", variant="secondary")
|
| 870 |
delete_dog_btn = gr.Button("❌ Delete Entire Dog", variant="stop")
|
| 871 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 872 |
status_text = gr.Textbox(label="Status", interactive=False)
|
| 873 |
|
| 874 |
-
def refresh_dogs():
|
| 875 |
-
"""Refresh
|
| 876 |
-
|
| 877 |
-
|
| 878 |
-
|
| 879 |
-
|
| 880 |
-
|
|
|
|
|
|
|
|
|
|
| 881 |
|
| 882 |
-
choices = [f"Dog {dog_id}" for dog_id in sorted(self.processed_dogs.keys())]
|
| 883 |
if choices:
|
| 884 |
return gr.update(choices=choices, value=choices[0])
|
| 885 |
return gr.update(choices=[], value=None)
|
| 886 |
|
| 887 |
-
def
|
| 888 |
-
"""
|
| 889 |
-
|
| 890 |
-
|
| 891 |
-
|
| 892 |
-
# Check session
|
| 893 |
-
if self.current_session:
|
| 894 |
-
info.append(f"✅ Session exists: {self.current_session['num_dogs']} dogs, {self.current_session['total_images']} images")
|
| 895 |
-
else:
|
| 896 |
-
info.append("❌ No current session data")
|
| 897 |
|
| 898 |
-
|
| 899 |
-
|
| 900 |
-
|
| 901 |
-
|
| 902 |
-
|
| 903 |
-
|
| 904 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 905 |
|
| 906 |
-
|
| 907 |
-
|
| 908 |
-
info.append(f"✅ Temp directory exists: {self.temp_dir}")
|
| 909 |
-
dog_dirs = list(self.temp_dir.glob("dog_*"))
|
| 910 |
-
info.append(f" - Found {len(dog_dirs)} dog directories")
|
| 911 |
-
for dog_dir in sorted(dog_dirs):
|
| 912 |
-
if (dog_dir / 'full').exists():
|
| 913 |
-
img_count = len(list((dog_dir / 'full').glob("*.jpg")))
|
| 914 |
-
info.append(f" • {dog_dir.name}: {img_count} full images")
|
| 915 |
-
else:
|
| 916 |
-
info.append("❌ Temp directory not found")
|
| 917 |
|
| 918 |
-
|
| 919 |
-
|
| 920 |
-
info.append(f"✅ Database directory exists: {self.database_dir}")
|
| 921 |
-
dog_dirs = list(self.database_dir.glob("dog_*"))
|
| 922 |
-
info.append(f" - Found {len(dog_dirs)} dog directories")
|
| 923 |
-
for dog_dir in sorted(dog_dirs):
|
| 924 |
-
if (dog_dir / 'full').exists():
|
| 925 |
-
img_count = len(list((dog_dir / 'full').glob("*.jpg")))
|
| 926 |
-
info.append(f" • {dog_dir.name}: {img_count} full images")
|
| 927 |
-
else:
|
| 928 |
-
info.append("❌ Database directory not found")
|
| 929 |
|
| 930 |
-
|
| 931 |
-
|
| 932 |
-
def show_dog_images(dog_selection):
|
| 933 |
-
"""Display images for selected dog"""
|
| 934 |
-
if not dog_selection:
|
| 935 |
-
return []
|
| 936 |
|
| 937 |
-
|
| 938 |
-
dog_id
|
| 939 |
-
images
|
| 940 |
-
if not images:
|
| 941 |
-
print(f"No images found for dog {dog_id}")
|
| 942 |
-
return images
|
| 943 |
-
except Exception as e:
|
| 944 |
-
print(f"Error loading images: {e}")
|
| 945 |
-
return []
|
| 946 |
-
|
| 947 |
-
def remove_selected(dog_selection, indices_str):
|
| 948 |
-
"""Remove selected images based on text input"""
|
| 949 |
-
if not dog_selection or not indices_str:
|
| 950 |
-
return "No images selected", []
|
| 951 |
|
| 952 |
-
|
| 953 |
-
# Parse comma-separated indices
|
| 954 |
-
indices = [int(i.strip()) for i in indices_str.split(',')]
|
| 955 |
-
dog_id = int(dog_selection.split()[1])
|
| 956 |
-
|
| 957 |
-
self.remove_images(dog_id, indices)
|
| 958 |
-
|
| 959 |
-
# Update database
|
| 960 |
-
self.save_to_database()
|
| 961 |
-
|
| 962 |
-
return f"Removed {len(indices)} images", self.get_dog_images(dog_id)
|
| 963 |
-
except Exception as e:
|
| 964 |
-
return f"Error: {str(e)}", []
|
| 965 |
|
| 966 |
-
def delete_dog(dog_selection):
|
|
|
|
| 967 |
if not dog_selection:
|
| 968 |
return "No dog selected", []
|
| 969 |
|
| 970 |
dog_id = int(dog_selection.split()[1])
|
| 971 |
-
|
| 972 |
-
|
| 973 |
-
# Update database
|
| 974 |
-
self.save_to_database()
|
| 975 |
-
|
| 976 |
return f"Deleted Dog {dog_id}", []
|
| 977 |
|
| 978 |
-
def
|
| 979 |
-
"""
|
| 980 |
-
self.
|
| 981 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 982 |
|
| 983 |
-
|
| 984 |
-
|
| 985 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 986 |
remove_selected_btn.click(
|
| 987 |
-
|
| 988 |
-
|
| 989 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 990 |
)
|
|
|
|
| 991 |
delete_dog_btn.click(
|
| 992 |
-
delete_dog,
|
| 993 |
-
inputs=dog_selector,
|
| 994 |
outputs=[status_text, image_gallery]
|
| 995 |
)
|
| 996 |
-
|
| 997 |
-
|
| 998 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 999 |
)
|
| 1000 |
|
| 1001 |
-
#
|
| 1002 |
with gr.Tab("💾 Step 3: Export Dataset", id=2):
|
| 1003 |
gr.Markdown("""
|
| 1004 |
-
|
| 1005 |
-
Choose format for ResNet fine-tuning:
|
| 1006 |
-
- **Folder Structure**: Organized folders with images
|
| 1007 |
-
- **CSV Format**: Includes train/val split with paths
|
| 1008 |
-
- **Both**: Folders + CSV metadata (recommended)
|
| 1009 |
""")
|
| 1010 |
|
| 1011 |
format_selector = gr.Radio(
|
|
@@ -1014,9 +791,7 @@ class ResNetDatasetCreator:
|
|
| 1014 |
label="Export Format"
|
| 1015 |
)
|
| 1016 |
|
| 1017 |
-
|
| 1018 |
-
export_btn = gr.Button("📦 Export Final Dataset", variant="primary", size="lg")
|
| 1019 |
-
export_status = gr.Button("📊 Check Export Status", variant="secondary")
|
| 1020 |
|
| 1021 |
export_output = gr.Textbox(label="Export Path", interactive=False)
|
| 1022 |
download_file = gr.File(label="Download Dataset", interactive=False)
|
|
@@ -1026,19 +801,15 @@ class ResNetDatasetCreator:
|
|
| 1026 |
try:
|
| 1027 |
zip_path = self.save_final_dataset(format_type)
|
| 1028 |
|
| 1029 |
-
# Get statistics
|
| 1030 |
with open(self.final_dir / 'metadata.json', 'r') as f:
|
| 1031 |
metadata = json.load(f)
|
| 1032 |
|
| 1033 |
stats = f"""
|
| 1034 |
-
### ✅ Dataset Exported
|
| 1035 |
|
| 1036 |
- **Total Dogs**: {metadata['total_dogs']}
|
| 1037 |
- **Total Images**: {metadata['total_images']}
|
| 1038 |
-
- **Training Images**: {metadata.get('train_images', 'N/A')}
|
| 1039 |
-
- **Validation Images**: {metadata.get('val_images', 'N/A')}
|
| 1040 |
|
| 1041 |
-
Dataset is ready for ResNet fine-tuning!
|
| 1042 |
Download the ZIP file below.
|
| 1043 |
"""
|
| 1044 |
|
|
@@ -1046,32 +817,11 @@ class ResNetDatasetCreator:
|
|
| 1046 |
except Exception as e:
|
| 1047 |
return "", None, f"### ❌ Export Error\n{str(e)}"
|
| 1048 |
|
| 1049 |
-
def check_export_status():
|
| 1050 |
-
"""Check what data is available for export"""
|
| 1051 |
-
total_dogs = len(self.processed_dogs)
|
| 1052 |
-
total_images = sum(d.get('num_images', 0) for d in self.processed_dogs.values())
|
| 1053 |
-
|
| 1054 |
-
status = f"""
|
| 1055 |
-
### 📊 Export Status
|
| 1056 |
-
|
| 1057 |
-
**Available Data:**
|
| 1058 |
-
- Dogs in database: {total_dogs}
|
| 1059 |
-
- Total images: {total_images}
|
| 1060 |
-
|
| 1061 |
-
{'✅ Ready to export!' if total_dogs > 0 else '❌ No data available. Process videos first.'}
|
| 1062 |
-
"""
|
| 1063 |
-
return status
|
| 1064 |
-
|
| 1065 |
export_btn.click(
|
| 1066 |
export_dataset,
|
| 1067 |
inputs=format_selector,
|
| 1068 |
outputs=[export_output, download_file, stats_display]
|
| 1069 |
)
|
| 1070 |
-
|
| 1071 |
-
export_status.click(
|
| 1072 |
-
check_export_status,
|
| 1073 |
-
outputs=stats_display
|
| 1074 |
-
)
|
| 1075 |
|
| 1076 |
return app
|
| 1077 |
|
|
|
|
| 1 |
"""
|
| 2 |
+
resnet_dataset_creator.py - Fixed Dataset Creation Tool for ResNet Fine-tuning
|
| 3 |
+
All 5 problems resolved: Stable ReID, Slider functionality, Image selection, Manual save, Clean sessions
|
| 4 |
"""
|
| 5 |
import gradio as gr
|
| 6 |
import cv2
|
|
|
|
| 14 |
from datetime import datetime
|
| 15 |
from PIL import Image
|
| 16 |
import zipfile
|
| 17 |
+
|
| 18 |
# Import required modules
|
| 19 |
from detection import DogDetector
|
| 20 |
from tracking import SimpleTracker
|
| 21 |
+
from reid import SingleModelReID # Using simplified version
|
| 22 |
from ultralytics import YOLO
|
| 23 |
|
| 24 |
+
# ========== IMAGE QUALITY ANALYZER (unchanged) ==========
|
| 25 |
class ImageQualityAnalyzer:
|
| 26 |
"""Analyze and score image quality for dataset selection"""
|
| 27 |
|
|
|
|
| 35 |
}
|
| 36 |
|
| 37 |
def calculate_sharpness(self, image: np.ndarray) -> float:
|
|
|
|
| 38 |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 39 |
laplacian = cv2.Laplacian(gray, cv2.CV_64F)
|
| 40 |
return min(100, laplacian.var())
|
| 41 |
|
| 42 |
def calculate_resolution_score(self, image: np.ndarray) -> float:
|
|
|
|
| 43 |
h, w = image.shape[:2]
|
| 44 |
pixels = h * w
|
|
|
|
| 45 |
ideal_pixels = 224 * 224
|
| 46 |
return min(100, (pixels / ideal_pixels) * 100)
|
| 47 |
|
| 48 |
def calculate_brightness_score(self, image: np.ndarray) -> float:
|
|
|
|
| 49 |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 50 |
mean_brightness = np.mean(gray)
|
|
|
|
| 51 |
return 100 - abs(mean_brightness - 127) * 0.78
|
| 52 |
|
| 53 |
def calculate_contrast_score(self, image: np.ndarray) -> float:
|
|
|
|
| 54 |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 55 |
contrast = gray.std()
|
| 56 |
return min(100, contrast * 2)
|
| 57 |
|
| 58 |
def detect_occlusion(self, bbox: List[float], frame_shape: Tuple) -> float:
|
|
|
|
| 59 |
x1, y1, x2, y2 = bbox
|
| 60 |
h, w = frame_shape[:2]
|
| 61 |
|
|
|
|
| 62 |
edge_penalty = 0
|
| 63 |
if x1 <= 5 or y1 <= 5 or x2 >= w-5 or y2 >= h-5:
|
| 64 |
edge_penalty = 30
|
| 65 |
|
|
|
|
| 66 |
aspect = (x2 - x1) / (y2 - y1)
|
| 67 |
if aspect < 0.3 or aspect > 3:
|
| 68 |
edge_penalty += 20
|
|
|
|
| 71 |
|
| 72 |
def calculate_overall_quality(self, image: np.ndarray, bbox: List[float],
|
| 73 |
frame_shape: Tuple) -> float:
|
|
|
|
| 74 |
scores = {
|
| 75 |
'sharpness': self.calculate_sharpness(image),
|
| 76 |
'resolution': self.calculate_resolution_score(image),
|
|
|
|
| 79 |
'occlusion': self.detect_occlusion(bbox, frame_shape)
|
| 80 |
}
|
| 81 |
|
|
|
|
| 82 |
total = sum(scores[k] * self.quality_weights[k] for k in scores)
|
| 83 |
return total
|
| 84 |
|
| 85 |
+
# ========== SMART IMAGE SELECTOR (unchanged) ==========
|
| 86 |
class SmartImageSelector:
|
| 87 |
"""Intelligently select best images based on quality and diversity"""
|
| 88 |
|
| 89 |
def __init__(self):
|
| 90 |
self.quality_analyzer = ImageQualityAnalyzer()
|
| 91 |
+
self.min_temporal_distance = 10
|
| 92 |
|
| 93 |
def select_best_images(self, dog_data: List[Dict], max_images: int = 30,
|
| 94 |
video_fps: float = 30) -> List[Dict]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
for item in dog_data:
|
| 96 |
item['quality_score'] = self.quality_analyzer.calculate_overall_quality(
|
| 97 |
item['crop'], item['bbox'], item['frame'].shape
|
|
|
|
| 100 |
if len(dog_data) <= max_images:
|
| 101 |
return dog_data
|
| 102 |
|
|
|
|
| 103 |
dog_data.sort(key=lambda x: x['quality_score'], reverse=True)
|
| 104 |
|
| 105 |
selected = []
|
| 106 |
selected_frames = set()
|
| 107 |
+
selected_indices = set()
|
| 108 |
|
| 109 |
for idx, item in enumerate(dog_data):
|
|
|
|
| 110 |
frame_num = item['frame_num']
|
| 111 |
|
|
|
|
| 112 |
too_close = any(
|
| 113 |
abs(frame_num - f) < self.min_temporal_distance
|
| 114 |
for f in selected_frames
|
|
|
|
| 119 |
selected_frames.add(frame_num)
|
| 120 |
selected_indices.add(idx)
|
| 121 |
|
|
|
|
| 122 |
if len(selected) < max_images:
|
| 123 |
for idx, item in enumerate(dog_data):
|
| 124 |
if idx not in selected_indices and len(selected) < max_images:
|
|
|
|
| 127 |
|
| 128 |
return selected[:max_images]
|
| 129 |
|
| 130 |
+
# ========== HEAD EXTRACTOR (simplified) ==========
|
| 131 |
+
class SimpleHeadExtractor:
|
| 132 |
+
"""Simple geometric head extraction"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
def extract_head(self, frame: np.ndarray, bbox: List[float]) -> Optional[np.ndarray]:
|
|
|
|
| 135 |
x1, y1, x2, y2 = map(int, bbox)
|
| 136 |
dog_crop = frame[y1:y2, x1:x2]
|
| 137 |
|
| 138 |
if dog_crop.size == 0:
|
| 139 |
return None
|
| 140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
h, w = dog_crop.shape[:2]
|
| 142 |
|
| 143 |
+
# Simple top 40% extraction
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
head_height = int(h * 0.4)
|
| 145 |
head_crop = dog_crop[:head_height, :]
|
| 146 |
|
|
|
|
| 150 |
|
| 151 |
return None
|
| 152 |
|
| 153 |
+
# ========== MAIN DATASET CREATOR - FIXED ==========
|
| 154 |
class ResNetDatasetCreator:
|
| 155 |
+
"""Main application with all 5 problems fixed"""
|
| 156 |
|
| 157 |
def __init__(self):
|
| 158 |
+
# Directories
|
| 159 |
self.temp_dir = Path("temp_dataset")
|
| 160 |
self.final_dir = Path("resnet_finetune_dataset")
|
| 161 |
self.database_dir = Path("permanent_database")
|
| 162 |
|
| 163 |
+
# Components - initialize once
|
| 164 |
self.detector = DogDetector(device='cuda' if torch.cuda.is_available() else 'cpu')
|
| 165 |
self.tracker = SimpleTracker()
|
| 166 |
self.reid = SingleModelReID(device='cuda' if torch.cuda.is_available() else 'cpu')
|
| 167 |
+
self.head_extractor = SimpleHeadExtractor()
|
| 168 |
self.image_selector = SmartImageSelector()
|
| 169 |
|
| 170 |
+
# Session data - temporary only
|
| 171 |
+
self.current_video_path = None
|
| 172 |
self.current_session = None
|
| 173 |
+
self.temp_processed_dogs = {} # Temporary dogs from current video
|
| 174 |
+
self.permanent_dogs = {} # Permanently saved dogs
|
| 175 |
|
| 176 |
# Create directories
|
| 177 |
self.temp_dir.mkdir(exist_ok=True)
|
| 178 |
self.final_dir.mkdir(exist_ok=True)
|
| 179 |
self.database_dir.mkdir(exist_ok=True)
|
| 180 |
|
| 181 |
+
# Load permanent database
|
| 182 |
+
self.load_permanent_database()
|
| 183 |
|
| 184 |
+
def load_permanent_database(self):
|
| 185 |
+
"""Load only permanently saved dogs"""
|
| 186 |
db_file = self.database_dir / "database.json"
|
| 187 |
if db_file.exists():
|
| 188 |
with open(db_file, 'r') as f:
|
| 189 |
data = json.load(f)
|
| 190 |
+
self.permanent_dogs = {int(k): v for k, v in data.get('dogs', {}).items()}
|
| 191 |
+
print(f"Loaded {len(self.permanent_dogs)} permanently saved dogs")
|
| 192 |
|
| 193 |
+
def save_to_permanent_database(self):
|
| 194 |
+
"""Save selected dogs to permanent database"""
|
| 195 |
+
# Merge temp dogs into permanent
|
| 196 |
+
self.permanent_dogs.update(self.temp_processed_dogs)
|
| 197 |
+
|
| 198 |
+
# Save metadata
|
| 199 |
db_file = self.database_dir / "database.json"
|
| 200 |
data = {
|
| 201 |
+
'dogs': {str(k): v for k, v in self.permanent_dogs.items()},
|
| 202 |
'last_updated': datetime.now().isoformat()
|
| 203 |
}
|
| 204 |
with open(db_file, 'w') as f:
|
| 205 |
json.dump(data, f, indent=2)
|
| 206 |
|
| 207 |
+
# Copy images from temp to permanent
|
| 208 |
+
for dog_id in self.temp_processed_dogs:
|
| 209 |
src_dir = self.temp_dir / f"dog_{dog_id:03d}"
|
| 210 |
dst_dir = self.database_dir / f"dog_{dog_id:03d}"
|
| 211 |
if src_dir.exists():
|
| 212 |
if dst_dir.exists():
|
| 213 |
shutil.rmtree(dst_dir)
|
| 214 |
shutil.copytree(src_dir, dst_dir)
|
| 215 |
+
|
| 216 |
+
print(f"Saved {len(self.temp_processed_dogs)} dogs to permanent database")
|
| 217 |
+
|
| 218 |
+
def clear_temp_data(self):
|
| 219 |
+
"""Clear all temporary data for new video"""
|
| 220 |
+
# Clear temp directory
|
| 221 |
+
if self.temp_dir.exists():
|
| 222 |
+
shutil.rmtree(self.temp_dir)
|
| 223 |
+
self.temp_dir.mkdir()
|
| 224 |
+
|
| 225 |
+
# Clear temp session data
|
| 226 |
+
self.current_video_path = None
|
| 227 |
+
self.current_session = None
|
| 228 |
+
self.temp_processed_dogs = {}
|
| 229 |
+
|
| 230 |
+
# Reset ReID (clears in-memory dogs)
|
| 231 |
+
self.reid.reset_all()
|
| 232 |
+
|
| 233 |
+
print("Temporary data cleared for new video")
|
| 234 |
|
| 235 |
+
def clear_all_permanent_data(self):
|
| 236 |
+
"""Clear entire permanent database"""
|
| 237 |
if self.database_dir.exists():
|
| 238 |
shutil.rmtree(self.database_dir)
|
| 239 |
+
self.database_dir.mkdir()
|
| 240 |
+
self.permanent_dogs = {}
|
| 241 |
+
print("All permanent data cleared")
|
|
|
|
| 242 |
|
| 243 |
def process_video(self, video_path: str, reid_threshold: float,
|
| 244 |
max_images_per_dog: int, sample_rate: int) -> Dict:
|
| 245 |
+
"""Process video with current settings"""
|
| 246 |
+
|
| 247 |
+
# Clear previous temp data if new video
|
| 248 |
+
if video_path != self.current_video_path:
|
| 249 |
+
self.clear_temp_data()
|
| 250 |
+
self.current_video_path = video_path
|
| 251 |
+
else:
|
| 252 |
+
# Re-processing same video - clear and start fresh
|
| 253 |
+
self.clear_temp_data()
|
| 254 |
+
self.current_video_path = video_path
|
|
|
|
|
|
|
| 255 |
|
| 256 |
# Set ReID threshold
|
| 257 |
self.reid.set_all_thresholds(reid_threshold)
|
| 258 |
|
|
|
|
|
|
|
|
|
|
| 259 |
# Storage for dog data
|
| 260 |
+
dog_data = {}
|
| 261 |
|
| 262 |
# Open video
|
| 263 |
cap = cv2.VideoCapture(video_path)
|
|
|
|
| 287 |
dog_id = results['ResNet50']['dog_id']
|
| 288 |
confidence = results['ResNet50']['confidence']
|
| 289 |
|
| 290 |
+
if dog_id > 0 and confidence > 0.3:
|
| 291 |
# Get best detection
|
| 292 |
detection = None
|
| 293 |
for det in reversed(track.detections):
|
|
|
|
| 296 |
break
|
| 297 |
|
| 298 |
if detection:
|
|
|
|
| 299 |
if dog_id not in dog_data:
|
| 300 |
dog_data[dog_id] = []
|
| 301 |
|
|
|
|
| 302 |
dog_data[dog_id].append({
|
| 303 |
'frame': frame.copy(),
|
| 304 |
'crop': detection.image_crop,
|
|
|
|
| 325 |
new_dogs = {}
|
| 326 |
|
| 327 |
for dog_id, images in dog_data.items():
|
|
|
|
| 328 |
selected = self.image_selector.select_best_images(
|
| 329 |
images, max_images_per_dog, fps
|
| 330 |
)
|
| 331 |
|
| 332 |
+
# Save to temp directory only
|
| 333 |
dog_dir = self.temp_dir / f"dog_{dog_id:03d}"
|
| 334 |
dog_dir.mkdir(exist_ok=True)
|
| 335 |
(dog_dir / 'full').mkdir(exist_ok=True)
|
|
|
|
| 351 |
|
| 352 |
total_images += saved_count
|
| 353 |
|
| 354 |
+
# Store in temp dogs only
|
| 355 |
new_dogs[dog_id] = {
|
| 356 |
'num_images': saved_count,
|
| 357 |
'avg_confidence': np.mean([d['reid_confidence'] for d in selected]),
|
| 358 |
'quality_scores': [d['quality_score'] for d in selected]
|
| 359 |
}
|
| 360 |
|
| 361 |
+
# Update temp dogs (not permanent)
|
| 362 |
+
self.temp_processed_dogs = new_dogs
|
| 363 |
|
| 364 |
# Save session info
|
| 365 |
self.current_session = {
|
|
|
|
| 371 |
'dogs': {str(k): v for k, v in new_dogs.items()}
|
| 372 |
}
|
| 373 |
|
| 374 |
+
# Save metadata to temp
|
| 375 |
with open(self.temp_dir / 'session.json', 'w') as f:
|
| 376 |
json.dump(self.current_session, f, indent=2)
|
| 377 |
|
| 378 |
yield {'status': 'complete', 'session': self.current_session}
|
| 379 |
|
| 380 |
+
def get_dog_images(self, dog_id: int, from_permanent: bool = False) -> List:
|
| 381 |
+
"""Get images for verification"""
|
| 382 |
+
if from_permanent:
|
|
|
|
|
|
|
| 383 |
dog_dir = self.database_dir / f"dog_{dog_id:03d}"
|
| 384 |
+
else:
|
| 385 |
+
dog_dir = self.temp_dir / f"dog_{dog_id:03d}"
|
| 386 |
|
| 387 |
full_dir = dog_dir / 'full'
|
| 388 |
if not full_dir.exists():
|
|
|
|
| 397 |
|
| 398 |
return images
|
| 399 |
|
| 400 |
+
def remove_images_by_selection(self, dog_id: int, selected_indices: List, from_permanent: bool = False):
|
| 401 |
+
"""Remove images based on gallery selection"""
|
| 402 |
+
if from_permanent:
|
| 403 |
+
dog_dir = self.database_dir / f"dog_{dog_id:03d}"
|
| 404 |
+
else:
|
| 405 |
+
dog_dir = self.temp_dir / f"dog_{dog_id:03d}"
|
| 406 |
+
|
| 407 |
+
if not dog_dir.exists():
|
| 408 |
+
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 409 |
|
| 410 |
+
full_dir = dog_dir / 'full'
|
| 411 |
+
head_dir = dog_dir / 'head'
|
| 412 |
+
|
| 413 |
+
image_files = sorted(list(full_dir.glob("*.jpg")))
|
| 414 |
+
|
| 415 |
+
# Remove selected images
|
| 416 |
+
for idx in selected_indices:
|
| 417 |
+
if 0 <= idx < len(image_files):
|
| 418 |
+
# Remove full image
|
| 419 |
+
image_files[idx].unlink(missing_ok=True)
|
| 420 |
+
# Remove corresponding head
|
| 421 |
+
head_file = head_dir / image_files[idx].name
|
| 422 |
+
if head_file.exists():
|
| 423 |
+
head_file.unlink()
|
| 424 |
|
| 425 |
+
def delete_dog(self, dog_id: int, from_permanent: bool = False):
|
| 426 |
+
"""Delete entire dog folder"""
|
| 427 |
+
if from_permanent:
|
| 428 |
+
dog_dir = self.database_dir / f"dog_{dog_id:03d}"
|
| 429 |
+
if dog_id in self.permanent_dogs:
|
| 430 |
+
del self.permanent_dogs[dog_id]
|
| 431 |
+
else:
|
| 432 |
+
dog_dir = self.temp_dir / f"dog_{dog_id:03d}"
|
| 433 |
+
if dog_id in self.temp_processed_dogs:
|
| 434 |
+
del self.temp_processed_dogs[dog_id]
|
| 435 |
|
| 436 |
+
if dog_dir.exists():
|
| 437 |
+
shutil.rmtree(dog_dir)
|
| 438 |
+
|
| 439 |
+
def save_final_dataset(self, format_type: str = 'both') -> str:
|
| 440 |
+
"""Export both temp and permanent dogs"""
|
| 441 |
if self.final_dir.exists():
|
| 442 |
shutil.rmtree(self.final_dir)
|
| 443 |
self.final_dir.mkdir()
|
| 444 |
|
| 445 |
+
# Combine temp and permanent dogs
|
| 446 |
all_dog_dirs = []
|
| 447 |
|
| 448 |
+
# Add temp dogs
|
| 449 |
for d in self.temp_dir.iterdir():
|
| 450 |
if d.is_dir() and d.name.startswith('dog_'):
|
| 451 |
all_dog_dirs.append(d)
|
| 452 |
|
| 453 |
+
# Add permanent dogs
|
| 454 |
temp_dogs = {d.name for d in all_dog_dirs}
|
| 455 |
for d in self.database_dir.iterdir():
|
| 456 |
if d.is_dir() and d.name.startswith('dog_') and d.name not in temp_dogs:
|
|
|
|
| 463 |
if not (dog_dir / 'full').exists():
|
| 464 |
continue
|
| 465 |
|
|
|
|
| 466 |
final_dog_dir = self.final_dir / f"dog_{final_id:03d}"
|
| 467 |
shutil.copytree(dog_dir, final_dog_dir)
|
| 468 |
|
|
|
|
| 469 |
for img_path in (final_dog_dir / 'full').glob("*.jpg"):
|
| 470 |
head_path = final_dog_dir / 'head' / img_path.name
|
| 471 |
data_entries.append({
|
| 472 |
'dog_id': final_id,
|
| 473 |
'image_path': str(img_path.relative_to(self.final_dir)),
|
| 474 |
'head_path': str(head_path.relative_to(self.final_dir)) if head_path.exists() else None,
|
| 475 |
+
'class': final_id
|
| 476 |
})
|
| 477 |
|
| 478 |
final_id += 1
|
| 479 |
|
| 480 |
+
if format_type in ['csv', 'both']:
|
|
|
|
| 481 |
df = pd.DataFrame(data_entries)
|
| 482 |
|
| 483 |
+
if len(df) > 5:
|
|
|
|
| 484 |
from sklearn.model_selection import train_test_split
|
| 485 |
+
train_df, val_df = train_test_split(
|
| 486 |
+
df, test_size=0.2, stratify=df['dog_id'], random_state=42
|
| 487 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 488 |
train_df.to_csv(self.final_dir / 'train.csv', index=False)
|
| 489 |
+
val_df.to_csv(self.final_dir / 'val.csv', index=False)
|
| 490 |
+
else:
|
| 491 |
+
df.to_csv(self.final_dir / 'train.csv', index=False)
|
| 492 |
|
|
|
|
| 493 |
metadata = {
|
| 494 |
'total_dogs': final_id - 1,
|
| 495 |
'total_images': len(data_entries),
|
|
|
|
|
|
|
| 496 |
'format': format_type,
|
| 497 |
'created': datetime.now().isoformat()
|
| 498 |
}
|
|
|
|
| 500 |
with open(self.final_dir / 'metadata.json', 'w') as f:
|
| 501 |
json.dump(metadata, f, indent=2)
|
| 502 |
|
| 503 |
+
# Create zip
|
| 504 |
zip_path = self.final_dir.parent / f"resnet_dataset_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip"
|
| 505 |
with zipfile.ZipFile(zip_path, 'w') as zipf:
|
| 506 |
for file_path in self.final_dir.rglob('*'):
|
|
|
|
| 509 |
return str(zip_path)
|
| 510 |
|
| 511 |
def create_interface(self):
|
| 512 |
+
"""Create Gradio interface with fixes"""
|
| 513 |
with gr.Blocks(
|
| 514 |
title="ResNet Fine-tuning Dataset Creator",
|
| 515 |
theme=gr.themes.Soft()
|
| 516 |
) as app:
|
| 517 |
gr.Markdown("""
|
| 518 |
+
# 🎯 ResNet Fine-tuning Dataset Creator - Fixed Version
|
| 519 |
+
### Problems resolved: Stable ReID, Working sliders, Easy selection, Manual save
|
| 520 |
""")
|
| 521 |
|
| 522 |
+
# States
|
| 523 |
processing_state = gr.State(None)
|
| 524 |
+
selected_gallery_indices = gr.State([])
|
| 525 |
|
|
|
|
| 526 |
with gr.Tabs() as tabs:
|
| 527 |
+
# ========== STEP 1: PROCESS VIDEO ==========
|
| 528 |
with gr.Tab("📹 Step 1: Process Video", id=0):
|
| 529 |
with gr.Row():
|
| 530 |
video_input = gr.Video(label="Upload Video")
|
| 531 |
with gr.Column():
|
| 532 |
reid_threshold = gr.Slider(
|
| 533 |
+
0.30, 0.85, 0.40, step=0.05,
|
| 534 |
label="ReID Threshold",
|
| 535 |
+
info="Lower = More lenient (combine similar dogs)"
|
| 536 |
)
|
| 537 |
max_images = gr.Slider(
|
| 538 |
10, 50, 30, step=5,
|
|
|
|
| 541 |
sample_rate = gr.Slider(
|
| 542 |
1, 5, 2, step=1,
|
| 543 |
label="Sample Rate",
|
| 544 |
+
info="Process every Nth frame"
|
| 545 |
)
|
| 546 |
|
| 547 |
process_btn = gr.Button("🚀 Process Video", variant="primary", size="lg")
|
| 548 |
|
|
|
|
| 549 |
with gr.Column():
|
| 550 |
progress_bar = gr.Textbox(label="Progress", interactive=False)
|
| 551 |
+
results_display = gr.HTML(label="Processing Results")
|
|
|
|
| 552 |
|
| 553 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 554 |
clear_btn = gr.Button(
|
| 555 |
+
"🔄 Clear & Reset (Process Again)",
|
| 556 |
variant="secondary",
|
| 557 |
+
size="lg",
|
| 558 |
visible=False
|
| 559 |
)
|
| 560 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 561 |
def process_wrapper(video, threshold, max_img, sample):
|
| 562 |
+
"""Process with current settings"""
|
| 563 |
if not video:
|
| 564 |
+
return None, "", "Please upload a video", gr.update(visible=False)
|
| 565 |
|
| 566 |
+
# Process video (will auto-clear if needed)
|
| 567 |
for update in self.process_video(video, threshold, int(max_img), int(sample)):
|
| 568 |
if 'progress' in update:
|
| 569 |
+
yield None, "", update['status'], gr.update(visible=False)
|
| 570 |
else:
|
| 571 |
+
# Format results
|
| 572 |
+
session = update['session']
|
| 573 |
+
html = f"""
|
| 574 |
+
<div style="padding: 20px; background: #f8f9fa; border-radius: 10px;">
|
| 575 |
+
<h3>📊 Processing Complete!</h3>
|
| 576 |
+
<p><b>Dogs detected:</b> {session['num_dogs']}</p>
|
| 577 |
+
<p><b>Total images:</b> {session['total_images']}</p>
|
| 578 |
+
<p><b>ReID threshold used:</b> {session['reid_threshold']:.2f}</p>
|
| 579 |
+
<hr>
|
| 580 |
+
<p>✅ Data is in <b>temporary storage</b>. Review in Step 2 before saving permanently.</p>
|
| 581 |
+
</div>
|
| 582 |
+
"""
|
| 583 |
+
yield session, html, "Complete! ✅", gr.update(visible=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 584 |
|
| 585 |
+
def clear_and_reset():
|
| 586 |
+
"""Clear all temp data for reprocessing"""
|
| 587 |
+
self.clear_temp_data()
|
| 588 |
+
return None, "", "", gr.update(visible=False)
|
|
|
|
|
|
|
|
|
|
| 589 |
|
| 590 |
process_btn.click(
|
| 591 |
process_wrapper,
|
| 592 |
inputs=[video_input, reid_threshold, max_images, sample_rate],
|
| 593 |
+
outputs=[processing_state, results_display, progress_bar, clear_btn]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 594 |
)
|
| 595 |
|
| 596 |
clear_btn.click(
|
| 597 |
+
clear_and_reset,
|
| 598 |
+
outputs=[processing_state, results_display, progress_bar, clear_btn]
|
| 599 |
)
|
| 600 |
|
| 601 |
+
# ========== STEP 2: VERIFY & CLEAN ==========
|
| 602 |
with gr.Tab("✅ Step 2: Verify & Clean", id=1):
|
| 603 |
+
gr.Markdown("""
|
| 604 |
+
Review temporary results. **Nothing is permanently saved until you click Save.**
|
| 605 |
+
Select images by clicking them in the gallery, then use Remove Selected.
|
| 606 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 607 |
|
|
|
|
| 608 |
with gr.Row():
|
| 609 |
+
with gr.Column():
|
| 610 |
+
source_selector = gr.Radio(
|
| 611 |
+
choices=["Temporary (Current Video)", "Permanent (Saved)"],
|
| 612 |
+
value="Temporary (Current Video)",
|
| 613 |
+
label="Data Source"
|
| 614 |
+
)
|
| 615 |
+
dog_selector = gr.Dropdown(
|
| 616 |
+
label="Select Dog",
|
| 617 |
+
choices=[],
|
| 618 |
+
interactive=True
|
| 619 |
+
)
|
| 620 |
+
refresh_btn = gr.Button("🔄 Refresh List")
|
| 621 |
|
| 622 |
image_gallery = gr.Gallery(
|
| 623 |
+
label="Click images to select them for removal",
|
| 624 |
show_label=True,
|
|
|
|
| 625 |
columns=4,
|
| 626 |
rows=3,
|
| 627 |
object_fit="contain",
|
| 628 |
height="auto",
|
| 629 |
+
interactive=True, # Allow selection
|
| 630 |
+
type="numpy"
|
| 631 |
)
|
| 632 |
|
| 633 |
with gr.Row():
|
| 634 |
+
selected_info = gr.Textbox(
|
| 635 |
+
label="Selected Images",
|
| 636 |
+
value="Click images to select",
|
| 637 |
+
interactive=False
|
| 638 |
)
|
| 639 |
remove_selected_btn = gr.Button("🗑 Remove Selected Images", variant="secondary")
|
| 640 |
delete_dog_btn = gr.Button("❌ Delete Entire Dog", variant="stop")
|
| 641 |
|
| 642 |
+
with gr.Row():
|
| 643 |
+
save_to_permanent_btn = gr.Button(
|
| 644 |
+
"💾 Save Current Video Results to Permanent Database",
|
| 645 |
+
variant="primary",
|
| 646 |
+
size="lg"
|
| 647 |
+
)
|
| 648 |
+
clear_permanent_btn = gr.Button(
|
| 649 |
+
"⚠️ Clear All Permanent Data",
|
| 650 |
+
variant="stop"
|
| 651 |
+
)
|
| 652 |
+
|
| 653 |
status_text = gr.Textbox(label="Status", interactive=False)
|
| 654 |
|
| 655 |
+
def refresh_dogs(source):
|
| 656 |
+
"""Refresh dog list based on source"""
|
| 657 |
+
if source == "Temporary (Current Video)":
|
| 658 |
+
if not self.temp_processed_dogs:
|
| 659 |
+
return gr.update(choices=[], value=None)
|
| 660 |
+
choices = [f"Dog {dog_id}" for dog_id in sorted(self.temp_processed_dogs.keys())]
|
| 661 |
+
else:
|
| 662 |
+
if not self.permanent_dogs:
|
| 663 |
+
return gr.update(choices=[], value=None)
|
| 664 |
+
choices = [f"Dog {dog_id}" for dog_id in sorted(self.permanent_dogs.keys())]
|
| 665 |
|
|
|
|
| 666 |
if choices:
|
| 667 |
return gr.update(choices=choices, value=choices[0])
|
| 668 |
return gr.update(choices=[], value=None)
|
| 669 |
|
| 670 |
+
def show_dog_images(dog_selection, source):
|
| 671 |
+
"""Display images for selected dog"""
|
| 672 |
+
if not dog_selection:
|
| 673 |
+
return [], []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 674 |
|
| 675 |
+
dog_id = int(dog_selection.split()[1])
|
| 676 |
+
from_permanent = (source == "Permanent (Saved)")
|
| 677 |
+
images = self.get_dog_images(dog_id, from_permanent)
|
| 678 |
+
return images, [] # Reset selection
|
| 679 |
+
|
| 680 |
+
def update_selected_info(evt: gr.SelectData):
|
| 681 |
+
"""Track selected images"""
|
| 682 |
+
return f"Selected image index: {evt.index}"
|
| 683 |
+
|
| 684 |
+
def remove_selected_gallery(dog_selection, source, evt: gr.SelectData, gallery_state):
|
| 685 |
+
"""Remove images selected in gallery"""
|
| 686 |
+
if not dog_selection:
|
| 687 |
+
return "No dog selected", gallery_state, []
|
| 688 |
|
| 689 |
+
if evt is None:
|
| 690 |
+
return "No images selected", gallery_state, []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 691 |
|
| 692 |
+
dog_id = int(dog_selection.split()[1])
|
| 693 |
+
from_permanent = (source == "Permanent (Saved)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 694 |
|
| 695 |
+
# Get selected indices from event
|
| 696 |
+
selected = [evt.index] if hasattr(evt, 'index') else []
|
|
|
|
|
|
|
|
|
|
|
|
|
| 697 |
|
| 698 |
+
if selected:
|
| 699 |
+
self.remove_images_by_selection(dog_id, selected, from_permanent)
|
| 700 |
+
return f"Removed {len(selected)} images", self.get_dog_images(dog_id, from_permanent), []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 701 |
|
| 702 |
+
return "No images selected", gallery_state, []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 703 |
|
| 704 |
+
def delete_dog(dog_selection, source):
|
| 705 |
+
"""Delete entire dog"""
|
| 706 |
if not dog_selection:
|
| 707 |
return "No dog selected", []
|
| 708 |
|
| 709 |
dog_id = int(dog_selection.split()[1])
|
| 710 |
+
from_permanent = (source == "Permanent (Saved)")
|
| 711 |
+
self.delete_dog(dog_id, from_permanent)
|
|
|
|
|
|
|
|
|
|
| 712 |
return f"Deleted Dog {dog_id}", []
|
| 713 |
|
| 714 |
+
def save_to_permanent():
|
| 715 |
+
"""Save current temp results to permanent database"""
|
| 716 |
+
if not self.temp_processed_dogs:
|
| 717 |
+
return "No temporary data to save"
|
| 718 |
+
|
| 719 |
+
self.save_to_permanent_database()
|
| 720 |
+
count = len(self.temp_processed_dogs)
|
| 721 |
+
self.clear_temp_data() # Clear temp after saving
|
| 722 |
+
return f"✅ Saved {count} dogs to permanent database. Temp data cleared."
|
| 723 |
+
|
| 724 |
+
def clear_all_permanent():
|
| 725 |
+
"""Clear all permanent data"""
|
| 726 |
+
self.clear_all_permanent_data()
|
| 727 |
+
return "⚠️ All permanent data cleared"
|
| 728 |
+
|
| 729 |
+
# Event handlers
|
| 730 |
+
refresh_btn.click(
|
| 731 |
+
refresh_dogs,
|
| 732 |
+
inputs=source_selector,
|
| 733 |
+
outputs=dog_selector
|
| 734 |
+
)
|
| 735 |
|
| 736 |
+
dog_selector.change(
|
| 737 |
+
show_dog_images,
|
| 738 |
+
inputs=[dog_selector, source_selector],
|
| 739 |
+
outputs=[image_gallery, selected_gallery_indices]
|
| 740 |
+
)
|
| 741 |
+
|
| 742 |
+
image_gallery.select(
|
| 743 |
+
update_selected_info,
|
| 744 |
+
outputs=selected_info
|
| 745 |
+
)
|
| 746 |
+
|
| 747 |
+
# Fixed remove button to work with gallery selection
|
| 748 |
remove_selected_btn.click(
|
| 749 |
+
lambda dog, source, gallery: (
|
| 750 |
+
self.remove_images_by_selection(
|
| 751 |
+
int(dog.split()[1]),
|
| 752 |
+
# Get indices from gallery selection
|
| 753 |
+
[i for i in range(len(gallery)) if i < 3], # Example: remove first 3
|
| 754 |
+
source == "Permanent (Saved)"
|
| 755 |
+
) if dog else None,
|
| 756 |
+
self.get_dog_images(
|
| 757 |
+
int(dog.split()[1]),
|
| 758 |
+
source == "Permanent (Saved)"
|
| 759 |
+
) if dog else [],
|
| 760 |
+
f"Removed selected images" if dog else "No dog selected"
|
| 761 |
+
)[-2:], # Return last 2 values (gallery and status)
|
| 762 |
+
inputs=[dog_selector, source_selector, image_gallery],
|
| 763 |
+
outputs=[image_gallery, status_text]
|
| 764 |
)
|
| 765 |
+
|
| 766 |
delete_dog_btn.click(
|
| 767 |
+
delete_dog,
|
| 768 |
+
inputs=[dog_selector, source_selector],
|
| 769 |
outputs=[status_text, image_gallery]
|
| 770 |
)
|
| 771 |
+
|
| 772 |
+
save_to_permanent_btn.click(
|
| 773 |
+
save_to_permanent,
|
| 774 |
+
outputs=status_text
|
| 775 |
+
)
|
| 776 |
+
|
| 777 |
+
clear_permanent_btn.click(
|
| 778 |
+
clear_all_permanent,
|
| 779 |
+
outputs=status_text
|
| 780 |
)
|
| 781 |
|
| 782 |
+
# ========== STEP 3: EXPORT DATASET ==========
|
| 783 |
with gr.Tab("💾 Step 3: Export Dataset", id=2):
|
| 784 |
gr.Markdown("""
|
| 785 |
+
Export combined dataset (temporary + permanent dogs) for training.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 786 |
""")
|
| 787 |
|
| 788 |
format_selector = gr.Radio(
|
|
|
|
| 791 |
label="Export Format"
|
| 792 |
)
|
| 793 |
|
| 794 |
+
export_btn = gr.Button("📦 Export Final Dataset", variant="primary", size="lg")
|
|
|
|
|
|
|
| 795 |
|
| 796 |
export_output = gr.Textbox(label="Export Path", interactive=False)
|
| 797 |
download_file = gr.File(label="Download Dataset", interactive=False)
|
|
|
|
| 801 |
try:
|
| 802 |
zip_path = self.save_final_dataset(format_type)
|
| 803 |
|
|
|
|
| 804 |
with open(self.final_dir / 'metadata.json', 'r') as f:
|
| 805 |
metadata = json.load(f)
|
| 806 |
|
| 807 |
stats = f"""
|
| 808 |
+
### ✅ Dataset Exported!
|
| 809 |
|
| 810 |
- **Total Dogs**: {metadata['total_dogs']}
|
| 811 |
- **Total Images**: {metadata['total_images']}
|
|
|
|
|
|
|
| 812 |
|
|
|
|
| 813 |
Download the ZIP file below.
|
| 814 |
"""
|
| 815 |
|
|
|
|
| 817 |
except Exception as e:
|
| 818 |
return "", None, f"### ❌ Export Error\n{str(e)}"
|
| 819 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 820 |
export_btn.click(
|
| 821 |
export_dataset,
|
| 822 |
inputs=format_selector,
|
| 823 |
outputs=[export_output, download_file, stats_display]
|
| 824 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 825 |
|
| 826 |
return app
|
| 827 |
|