Spaces:
Sleeping
Sleeping
Update tracking.py
Browse files- tracking.py +375 -479
tracking.py
CHANGED
|
@@ -1,524 +1,440 @@
|
|
| 1 |
"""
|
| 2 |
-
|
|
|
|
| 3 |
"""
|
| 4 |
import numpy as np
|
| 5 |
-
from typing import List, Optional, Tuple, Dict
|
| 6 |
from scipy.optimize import linear_sum_assignment
|
|
|
|
| 7 |
from collections import deque
|
|
|
|
| 8 |
import uuid
|
| 9 |
from detection import Detection
|
| 10 |
-
import warnings
|
| 11 |
-
warnings.filterwarnings('ignore')
|
| 12 |
|
| 13 |
-
class
|
| 14 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
def __init__(self, detection: Detection, track_id: Optional[int] = None):
|
| 16 |
self.track_id = track_id if track_id else self._generate_id()
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
# Track state
|
|
|
|
|
|
|
|
|
|
| 22 |
self.age = 1
|
| 23 |
self.time_since_update = 0
|
| 24 |
self.state = 'tentative'
|
| 25 |
-
self.hits = 1
|
| 26 |
-
self.consecutive_misses = 0
|
| 27 |
|
| 28 |
-
#
|
| 29 |
-
self.
|
| 30 |
-
|
| 31 |
-
|
| 32 |
|
| 33 |
-
#
|
| 34 |
-
cx = (self.bbox[0] + self.bbox[2]) / 2
|
| 35 |
-
cy = (self.bbox[1] + self.bbox[3]) / 2
|
| 36 |
self.trajectory = deque(maxlen=30)
|
| 37 |
self.trajectory.append((cx, cy))
|
| 38 |
|
| 39 |
-
#
|
| 40 |
-
self.velocity = np.array([0.0, 0.0])
|
| 41 |
-
self.acceleration = np.array([0.0, 0.0])
|
| 42 |
-
|
| 43 |
-
# Appearance features
|
| 44 |
-
self.appearance_features = []
|
| 45 |
-
if hasattr(detection, 'features'):
|
| 46 |
-
self.appearance_features.append(detection.features)
|
| 47 |
-
|
| 48 |
-
# Size tracking with validation
|
| 49 |
-
self.sizes = deque(maxlen=10)
|
| 50 |
-
width = max(1, self.bbox[2] - self.bbox[0])
|
| 51 |
-
height = max(1, self.bbox[3] - self.bbox[1])
|
| 52 |
-
self.sizes.append((width, height))
|
| 53 |
-
self.initial_size = (width, height)
|
| 54 |
-
|
| 55 |
-
# Track quality metrics
|
| 56 |
self.avg_confidence = self.confidence
|
| 57 |
-
self.
|
| 58 |
-
|
| 59 |
-
self.confidence_history.append(self.confidence)
|
| 60 |
-
|
| 61 |
def _generate_id(self) -> int:
|
| 62 |
return int(uuid.uuid4().int % 100000)
|
| 63 |
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
new_height = detection.bbox[3] - detection.bbox[1]
|
| 75 |
-
|
| 76 |
-
if self.initial_size[0] > 0 and self.initial_size[1] > 0:
|
| 77 |
-
width_ratio = new_width / self.initial_size[0]
|
| 78 |
-
height_ratio = new_height / self.initial_size[1]
|
| 79 |
-
|
| 80 |
-
# Allow 50% size variation max (prevents wild mismatches)
|
| 81 |
-
if width_ratio < 0.5 or width_ratio > 2.0:
|
| 82 |
-
return False
|
| 83 |
-
if height_ratio < 0.5 or height_ratio > 2.0:
|
| 84 |
-
return False
|
| 85 |
-
|
| 86 |
-
# Check position consistency (not jumping too far)
|
| 87 |
-
new_cx = (detection.bbox[0] + detection.bbox[2]) / 2
|
| 88 |
-
new_cy = (detection.bbox[1] + detection.bbox[3]) / 2
|
| 89 |
-
|
| 90 |
-
if len(self.trajectory) > 0:
|
| 91 |
-
last_cx, last_cy = self.trajectory[-1]
|
| 92 |
-
distance = np.sqrt((new_cx - last_cx)**2 + (new_cy - last_cy)**2)
|
| 93 |
-
|
| 94 |
-
# Max reasonable movement per frame (adjust based on your video)
|
| 95 |
-
max_movement = 100 # pixels
|
| 96 |
-
if distance > max_movement:
|
| 97 |
-
return False
|
| 98 |
-
|
| 99 |
-
return True
|
| 100 |
|
| 101 |
def predict(self):
|
| 102 |
-
"""
|
| 103 |
self.age += 1
|
| 104 |
self.time_since_update += 1
|
| 105 |
self.consecutive_misses += 1
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
positions = np.array(list(self.trajectory))[-3:]
|
| 110 |
-
self.velocity = positions[-1] - positions[-2]
|
| 111 |
-
|
| 112 |
-
# Limit velocity
|
| 113 |
-
max_velocity = 50
|
| 114 |
-
velocity_magnitude = np.linalg.norm(self.velocity)
|
| 115 |
-
if velocity_magnitude > max_velocity:
|
| 116 |
-
self.velocity = self.velocity / velocity_magnitude * max_velocity
|
| 117 |
-
|
| 118 |
-
if len(positions) == 3:
|
| 119 |
-
prev_velocity = positions[-2] - positions[-3]
|
| 120 |
-
self.acceleration = (self.velocity - prev_velocity) * 0.3
|
| 121 |
-
|
| 122 |
-
predicted_pos = positions[-1] + self.velocity * 0.7 + self.acceleration * 0.1
|
| 123 |
-
|
| 124 |
-
if self.sizes:
|
| 125 |
-
avg_width = np.mean([s[0] for s in self.sizes])
|
| 126 |
-
avg_height = np.mean([s[1] for s in self.sizes])
|
| 127 |
-
else:
|
| 128 |
-
avg_width = max(10, self.bbox[2] - self.bbox[0])
|
| 129 |
-
avg_height = max(10, self.bbox[3] - self.bbox[1])
|
| 130 |
-
|
| 131 |
-
self.bbox = [
|
| 132 |
-
predicted_pos[0] - avg_width/2,
|
| 133 |
-
predicted_pos[1] - avg_height/2,
|
| 134 |
-
predicted_pos[0] + avg_width/2,
|
| 135 |
-
predicted_pos[1] + avg_height/2
|
| 136 |
-
]
|
| 137 |
-
except Exception as e:
|
| 138 |
-
pass
|
| 139 |
|
| 140 |
def update(self, detection: Detection):
|
| 141 |
-
"""Update track with
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
self.sizes.append((width, height))
|
| 179 |
-
|
| 180 |
-
# Store appearance features
|
| 181 |
-
if hasattr(detection, 'features'):
|
| 182 |
-
self.appearance_features.append(detection.features)
|
| 183 |
-
if len(self.appearance_features) > 5:
|
| 184 |
-
self.appearance_features = self.appearance_features[-5:]
|
| 185 |
-
|
| 186 |
-
# Confirm track after validation
|
| 187 |
-
if self.is_validated and self.state == 'tentative':
|
| 188 |
-
self.state = 'confirmed'
|
| 189 |
-
|
| 190 |
-
# Keep only recent detections
|
| 191 |
-
if len(self.detections) > 5:
|
| 192 |
-
for old_det in self.detections[:-5]:
|
| 193 |
-
if hasattr(old_det, 'image_crop'):
|
| 194 |
-
old_det.image_crop = None
|
| 195 |
-
self.detections = self.detections[-5:]
|
| 196 |
-
|
| 197 |
-
except Exception as e:
|
| 198 |
-
print(f"Track update error: {e}")
|
| 199 |
|
| 200 |
def mark_missed(self):
|
| 201 |
"""Mark track as missed"""
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
if self.consecutive_misses > 20: # Extended buffer for validated tracks
|
| 205 |
-
self.state = 'deleted'
|
| 206 |
-
elif self.time_since_update > 40:
|
| 207 |
self.state = 'deleted'
|
| 208 |
elif self.state == 'tentative':
|
| 209 |
-
if self.consecutive_misses >
|
| 210 |
self.state = 'deleted'
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
|
| 216 |
-
class
|
| 217 |
"""
|
| 218 |
-
|
|
|
|
| 219 |
"""
|
| 220 |
def __init__(self,
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
self.use_appearance = use_appearance
|
| 230 |
|
| 231 |
-
self.tracks: List[
|
| 232 |
self.track_id_count = 1
|
| 233 |
|
| 234 |
-
#
|
| 235 |
-
self.
|
| 236 |
-
self.
|
| 237 |
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
|
|
|
|
|
|
| 241 |
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
if not hasattr(detection, 'bbox') or len(detection.bbox) != 4:
|
| 247 |
-
return False
|
| 248 |
-
|
| 249 |
-
width = detection.bbox[2] - detection.bbox[0]
|
| 250 |
-
height = detection.bbox[3] - detection.bbox[1]
|
| 251 |
-
|
| 252 |
-
# Filter too small or too large
|
| 253 |
-
if width < self.min_dog_size or height < self.min_dog_size:
|
| 254 |
-
return False
|
| 255 |
-
if width > self.max_dog_size or height > self.max_dog_size:
|
| 256 |
-
return False
|
| 257 |
-
|
| 258 |
-
# Aspect ratio check (dogs shouldn't be super wide or super tall)
|
| 259 |
-
if width > 0 and height > 0:
|
| 260 |
-
aspect_ratio = width / height
|
| 261 |
-
if aspect_ratio < 0.3 or aspect_ratio > 3.0:
|
| 262 |
-
return False
|
| 263 |
-
|
| 264 |
-
return True
|
| 265 |
-
|
| 266 |
-
def _check_appearance_similarity(self, detection: Detection) -> bool:
|
| 267 |
-
"""
|
| 268 |
-
ENHANCEMENT 7: Check if detection is too similar to existing tracks
|
| 269 |
-
Prevents duplicate tracks for the same dog
|
| 270 |
-
"""
|
| 271 |
-
if not hasattr(detection, 'bbox'):
|
| 272 |
-
return True
|
| 273 |
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
# Check center distance
|
| 287 |
-
distance = np.linalg.norm(np.array(det_center) - np.array(track_center))
|
| 288 |
-
|
| 289 |
-
# Check size similarity
|
| 290 |
-
size_diff = abs(det_size[0] - track_size[0]) + abs(det_size[1] - track_size[1])
|
| 291 |
-
avg_size = (det_size[0] + det_size[1] + track_size[0] + track_size[1]) / 4
|
| 292 |
-
|
| 293 |
-
# If very close and similar size, it's likely the same dog
|
| 294 |
-
if distance < 40 and size_diff < avg_size * 0.3:
|
| 295 |
-
return False # Too similar to existing track
|
| 296 |
|
| 297 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 298 |
|
| 299 |
-
def
|
| 300 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 301 |
|
| 302 |
-
#
|
| 303 |
-
|
|
|
|
| 304 |
|
| 305 |
-
|
| 306 |
-
|
|
|
|
| 307 |
|
| 308 |
-
|
|
|
|
| 309 |
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
track.predict()
|
| 313 |
-
track.mark_missed()
|
| 314 |
-
|
| 315 |
-
# Move lost tracks to sleeping (call ReID's move_to_sleeping)
|
| 316 |
-
self._handle_lost_tracks()
|
| 317 |
-
|
| 318 |
-
self.tracks = [t for t in self.tracks if t.state != 'deleted']
|
| 319 |
-
return [t for t in self.tracks if t.state == 'confirmed']
|
| 320 |
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
for track in self.tracks:
|
| 324 |
-
track.predict()
|
| 325 |
-
|
| 326 |
-
# Split tracks by state
|
| 327 |
-
confirmed_tracks = [t for t in self.tracks if t.state == 'confirmed']
|
| 328 |
-
tentative_tracks = [t for t in self.tracks if t.state == 'tentative']
|
| 329 |
-
|
| 330 |
-
matched_track_indices = set()
|
| 331 |
-
matched_det_indices = set()
|
| 332 |
-
|
| 333 |
-
# Stage 1: Match confirmed tracks
|
| 334 |
-
if confirmed_tracks and detections:
|
| 335 |
-
matched_track_indices, matched_det_indices = self._associate_tracks(
|
| 336 |
-
confirmed_tracks, detections,
|
| 337 |
-
matched_track_indices, matched_det_indices,
|
| 338 |
-
threshold_mult=1.0
|
| 339 |
-
)
|
| 340 |
-
|
| 341 |
-
# Stage 2: Match tentative tracks
|
| 342 |
-
if tentative_tracks:
|
| 343 |
-
unmatched_dets = [detections[i] for i in range(len(detections))
|
| 344 |
-
if i not in matched_det_indices]
|
| 345 |
-
|
| 346 |
-
if unmatched_dets:
|
| 347 |
-
temp_det_mapping = [i for i in range(len(detections))
|
| 348 |
-
if i not in matched_det_indices]
|
| 349 |
-
|
| 350 |
-
tent_matched_tracks, tent_matched_dets = self._associate_tracks(
|
| 351 |
-
tentative_tracks, unmatched_dets,
|
| 352 |
-
set(), set(),
|
| 353 |
-
threshold_mult=0.7
|
| 354 |
-
)
|
| 355 |
-
|
| 356 |
-
for det_idx in tent_matched_dets:
|
| 357 |
-
matched_det_indices.add(temp_det_mapping[det_idx])
|
| 358 |
-
|
| 359 |
-
# Mark unmatched tracks
|
| 360 |
-
for i, track in enumerate(confirmed_tracks):
|
| 361 |
-
if i not in matched_track_indices:
|
| 362 |
-
track.mark_missed()
|
| 363 |
-
|
| 364 |
-
for track in tentative_tracks:
|
| 365 |
-
if track.time_since_update > 0:
|
| 366 |
-
track.mark_missed()
|
| 367 |
-
|
| 368 |
-
# ENHANCEMENT 7: Create new tracks with validation
|
| 369 |
-
for det_idx in range(len(detections)):
|
| 370 |
-
if det_idx not in matched_det_indices:
|
| 371 |
-
detection = detections[det_idx]
|
| 372 |
-
|
| 373 |
-
# Check appearance similarity before creating track
|
| 374 |
-
if self._check_appearance_similarity(detection):
|
| 375 |
-
new_track = Track(detection, self.track_id_count)
|
| 376 |
-
self.track_id_count += 1
|
| 377 |
-
self.tracks.append(new_track)
|
| 378 |
-
else:
|
| 379 |
-
print(f" 🚫 Rejected duplicate track candidate")
|
| 380 |
-
|
| 381 |
-
# Handle lost tracks
|
| 382 |
-
self._handle_lost_tracks()
|
| 383 |
-
|
| 384 |
-
# Remove deleted tracks
|
| 385 |
-
self.tracks = [t for t in self.tracks if t.state != 'deleted']
|
| 386 |
-
|
| 387 |
-
# Return only validated confirmed tracks
|
| 388 |
-
return [t for t in self.tracks if t.state == 'confirmed' and t.is_validated]
|
| 389 |
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
def _handle_lost_tracks(self):
|
| 395 |
-
"""Handle tracks that are about to be deleted"""
|
| 396 |
-
for track in self.tracks:
|
| 397 |
-
# If track is validated and about to be deleted, could move to sleeping
|
| 398 |
-
if (track.is_validated and
|
| 399 |
-
track.state == 'confirmed' and
|
| 400 |
-
track.consecutive_misses == 18): # Just before deletion at 20
|
| 401 |
-
|
| 402 |
-
# This would be called by demo to move to ReID sleeping tracks
|
| 403 |
-
if hasattr(self, '_reid_callback'):
|
| 404 |
-
self._reid_callback(track.track_id)
|
| 405 |
-
|
| 406 |
-
def set_reid_callback(self, callback):
|
| 407 |
-
"""Set callback to ReID for moving tracks to sleeping"""
|
| 408 |
-
self._reid_callback = callback
|
| 409 |
-
|
| 410 |
-
def _associate_tracks(self, tracks: List[Track], detections: List[Detection],
|
| 411 |
-
existing_matched_tracks: set, existing_matched_dets: set,
|
| 412 |
-
threshold_mult: float = 1.0) -> Tuple[set, set]:
|
| 413 |
-
"""Track-detection association"""
|
| 414 |
-
if not tracks or not detections:
|
| 415 |
-
return existing_matched_tracks, existing_matched_dets
|
| 416 |
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
if cost_matrix.size == 0:
|
| 421 |
-
return existing_matched_tracks, existing_matched_dets
|
| 422 |
-
|
| 423 |
-
row_ind, col_ind = linear_sum_assignment(cost_matrix)
|
| 424 |
-
|
| 425 |
-
matched_tracks = existing_matched_tracks.copy()
|
| 426 |
-
matched_dets = existing_matched_dets.copy()
|
| 427 |
-
|
| 428 |
-
for r, c in zip(row_ind, col_ind):
|
| 429 |
-
if r >= len(tracks) or c >= len(detections):
|
| 430 |
-
continue
|
| 431 |
-
|
| 432 |
-
threshold = (1 - self.match_threshold * threshold_mult)
|
| 433 |
-
if cost_matrix[r, c] < threshold:
|
| 434 |
-
tracks[r].update(detections[c])
|
| 435 |
-
matched_tracks.add(r)
|
| 436 |
-
matched_dets.add(c)
|
| 437 |
-
|
| 438 |
-
return matched_tracks, matched_dets
|
| 439 |
|
| 440 |
-
|
| 441 |
-
print(f"Association error: {e}")
|
| 442 |
-
return existing_matched_tracks, existing_matched_dets
|
| 443 |
|
| 444 |
-
def
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 454 |
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 458 |
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
max(1, track.bbox[3] - track.bbox[1])
|
| 463 |
-
])
|
| 464 |
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
iou = self._iou(track.bbox, detection.bbox)
|
| 471 |
-
|
| 472 |
-
# Center distance
|
| 473 |
-
det_center = np.array(self._get_center(detection.bbox))
|
| 474 |
-
distance = np.linalg.norm(track_center - det_center)
|
| 475 |
-
|
| 476 |
-
# Size similarity
|
| 477 |
-
det_size = np.array([
|
| 478 |
-
max(1, detection.bbox[2] - detection.bbox[0]),
|
| 479 |
-
max(1, detection.bbox[3] - detection.bbox[1])
|
| 480 |
-
])
|
| 481 |
-
|
| 482 |
-
size_ratio = np.minimum(track_size, det_size) / (np.maximum(track_size, det_size) + 1e-6)
|
| 483 |
-
size_cost = 1 - np.mean(size_ratio)
|
| 484 |
-
|
| 485 |
-
if iou >= self.min_iou_for_match and distance < self.max_center_distance:
|
| 486 |
-
iou_cost = 1 - iou
|
| 487 |
-
dist_cost = distance / self.max_center_distance
|
| 488 |
-
|
| 489 |
-
total_cost = (0.6 * iou_cost +
|
| 490 |
-
0.25 * dist_cost +
|
| 491 |
-
0.15 * size_cost)
|
| 492 |
-
|
| 493 |
-
# Boost validated tracks
|
| 494 |
-
if track.is_validated:
|
| 495 |
-
total_cost *= 0.9
|
| 496 |
-
|
| 497 |
-
cost_matrix[t_idx, d_idx] = total_cost
|
| 498 |
else:
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 502 |
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 506 |
|
| 507 |
-
def
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
return
|
| 513 |
-
|
| 514 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 515 |
|
| 516 |
def _iou(self, bbox1: List[float], bbox2: List[float]) -> float:
|
| 517 |
-
"""Calculate IoU"""
|
| 518 |
try:
|
| 519 |
-
if len(bbox1) < 4 or len(bbox2) < 4:
|
| 520 |
-
return 0.0
|
| 521 |
-
|
| 522 |
x1 = max(bbox1[0], bbox2[0])
|
| 523 |
y1 = max(bbox1[1], bbox2[1])
|
| 524 |
x2 = min(bbox1[2], bbox2[2])
|
|
@@ -528,40 +444,20 @@ class EnhancedTracker:
|
|
| 528 |
return 0.0
|
| 529 |
|
| 530 |
intersection = (x2 - x1) * (y2 - y1)
|
| 531 |
-
area1 =
|
| 532 |
-
area2 =
|
| 533 |
union = area1 + area2 - intersection
|
| 534 |
|
| 535 |
-
return
|
| 536 |
-
|
| 537 |
-
except Exception as e:
|
| 538 |
return 0.0
|
| 539 |
|
| 540 |
-
def set_match_threshold(self, threshold: float):
|
| 541 |
-
"""Update matching threshold"""
|
| 542 |
-
self.match_threshold = max(0.1, min(0.8, threshold))
|
| 543 |
-
print(f"Tracking threshold: {self.match_threshold:.2f}")
|
| 544 |
-
|
| 545 |
def reset(self):
|
| 546 |
"""Reset tracker"""
|
| 547 |
self.tracks.clear()
|
| 548 |
self.track_id_count = 1
|
| 549 |
-
print("
|
| 550 |
-
|
| 551 |
-
def get_statistics(self) -> Dict:
|
| 552 |
-
"""Get statistics"""
|
| 553 |
-
confirmed = len([t for t in self.tracks if t.state == 'confirmed'])
|
| 554 |
-
validated = len([t for t in self.tracks if t.is_validated])
|
| 555 |
-
tentative = len([t for t in self.tracks if t.state == 'tentative'])
|
| 556 |
-
|
| 557 |
-
return {
|
| 558 |
-
'total_tracks': len(self.tracks),
|
| 559 |
-
'confirmed_tracks': confirmed,
|
| 560 |
-
'validated_tracks': validated,
|
| 561 |
-
'tentative_tracks': tentative,
|
| 562 |
-
'next_id': self.track_id_count
|
| 563 |
-
}
|
| 564 |
|
| 565 |
-
# Compatibility
|
| 566 |
-
SimpleTracker =
|
| 567 |
-
RobustTracker =
|
|
|
|
| 1 |
"""
|
| 2 |
+
DeepSORT Tracker Implementation
|
| 3 |
+
Uses Kalman filter for motion prediction + appearance features
|
| 4 |
"""
|
| 5 |
import numpy as np
|
|
|
|
| 6 |
from scipy.optimize import linear_sum_assignment
|
| 7 |
+
from scipy.spatial.distance import cosine
|
| 8 |
from collections import deque
|
| 9 |
+
from typing import List, Optional, Tuple
|
| 10 |
import uuid
|
| 11 |
from detection import Detection
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
class KalmanFilter:
|
| 14 |
+
"""
|
| 15 |
+
Kalman Filter for tracking with constant velocity model
|
| 16 |
+
State: [x, y, w, h, vx, vy, vw, vh]
|
| 17 |
+
"""
|
| 18 |
+
def __init__(self):
|
| 19 |
+
# State transition matrix (constant velocity model)
|
| 20 |
+
self.F = np.eye(8)
|
| 21 |
+
for i in range(4):
|
| 22 |
+
self.F[i, i+4] = 1
|
| 23 |
+
|
| 24 |
+
# Measurement matrix (we observe position and size)
|
| 25 |
+
self.H = np.eye(4, 8)
|
| 26 |
+
|
| 27 |
+
# Process noise
|
| 28 |
+
self.Q = np.eye(8)
|
| 29 |
+
self.Q[4:, 4:] *= 0.01 # Smaller noise for velocities
|
| 30 |
+
|
| 31 |
+
# Measurement noise
|
| 32 |
+
self.R = np.eye(4) * 10
|
| 33 |
+
|
| 34 |
+
# State covariance
|
| 35 |
+
self.P = np.eye(8) * 1000
|
| 36 |
+
|
| 37 |
+
# State vector [x, y, w, h, vx, vy, vw, vh]
|
| 38 |
+
self.x = np.zeros(8)
|
| 39 |
+
|
| 40 |
+
def initiate(self, measurement: np.ndarray):
|
| 41 |
+
"""Initialize filter with first measurement [x, y, w, h]"""
|
| 42 |
+
self.x[:4] = measurement
|
| 43 |
+
self.x[4:] = 0 # Zero velocity
|
| 44 |
+
|
| 45 |
+
def predict(self):
|
| 46 |
+
"""Predict next state"""
|
| 47 |
+
self.x = self.F @ self.x
|
| 48 |
+
self.P = self.F @ self.P @ self.F.T + self.Q
|
| 49 |
+
return self.x[:4]
|
| 50 |
+
|
| 51 |
+
def update(self, measurement: np.ndarray):
|
| 52 |
+
"""Update with new measurement"""
|
| 53 |
+
# Innovation
|
| 54 |
+
y = measurement - self.H @ self.x
|
| 55 |
+
|
| 56 |
+
# Innovation covariance
|
| 57 |
+
S = self.H @ self.P @ self.H.T + self.R
|
| 58 |
+
|
| 59 |
+
# Kalman gain
|
| 60 |
+
K = self.P @ self.H.T @ np.linalg.inv(S)
|
| 61 |
+
|
| 62 |
+
# Update state
|
| 63 |
+
self.x = self.x + K @ y
|
| 64 |
+
|
| 65 |
+
# Update covariance
|
| 66 |
+
self.P = (np.eye(8) - K @ self.H) @ self.P
|
| 67 |
+
|
| 68 |
+
return self.x[:4]
|
| 69 |
+
|
| 70 |
+
def get_state(self) -> np.ndarray:
|
| 71 |
+
"""Get current state [x, y, w, h]"""
|
| 72 |
+
return self.x[:4]
|
| 73 |
+
|
| 74 |
+
class DeepSORTTrack:
|
| 75 |
+
"""
|
| 76 |
+
DeepSORT Track with Kalman filter and appearance features
|
| 77 |
+
"""
|
| 78 |
def __init__(self, detection: Detection, track_id: Optional[int] = None):
|
| 79 |
self.track_id = track_id if track_id else self._generate_id()
|
| 80 |
+
|
| 81 |
+
# Convert bbox to center format [cx, cy, w, h]
|
| 82 |
+
x1, y1, x2, y2 = detection.bbox
|
| 83 |
+
cx = (x1 + x2) / 2
|
| 84 |
+
cy = (y1 + y2) / 2
|
| 85 |
+
w = x2 - x1
|
| 86 |
+
h = y2 - y1
|
| 87 |
+
|
| 88 |
+
# Initialize Kalman filter
|
| 89 |
+
self.kf = KalmanFilter()
|
| 90 |
+
self.kf.initiate(np.array([cx, cy, w, h]))
|
| 91 |
|
| 92 |
# Track state
|
| 93 |
+
self.detections = [detection]
|
| 94 |
+
self.confidence = detection.confidence
|
| 95 |
+
self.hits = 1
|
| 96 |
self.age = 1
|
| 97 |
self.time_since_update = 0
|
| 98 |
self.state = 'tentative'
|
|
|
|
|
|
|
| 99 |
|
| 100 |
+
# Appearance features for ReID
|
| 101 |
+
self.features = deque(maxlen=100) # Store last 100 features
|
| 102 |
+
if hasattr(detection, 'features') and detection.features is not None:
|
| 103 |
+
self.features.append(detection.features)
|
| 104 |
|
| 105 |
+
# Trajectory
|
|
|
|
|
|
|
| 106 |
self.trajectory = deque(maxlen=30)
|
| 107 |
self.trajectory.append((cx, cy))
|
| 108 |
|
| 109 |
+
# Quality metrics
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
self.avg_confidence = self.confidence
|
| 111 |
+
self.consecutive_misses = 0
|
| 112 |
+
|
|
|
|
|
|
|
| 113 |
def _generate_id(self) -> int:
|
| 114 |
return int(uuid.uuid4().int % 100000)
|
| 115 |
|
| 116 |
+
@property
|
| 117 |
+
def bbox(self) -> List[float]:
|
| 118 |
+
"""Get bbox in [x1, y1, x2, y2] format"""
|
| 119 |
+
cx, cy, w, h = self.kf.get_state()
|
| 120 |
+
return [
|
| 121 |
+
cx - w/2,
|
| 122 |
+
cy - h/2,
|
| 123 |
+
cx + w/2,
|
| 124 |
+
cy + h/2
|
| 125 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
def predict(self):
|
| 128 |
+
"""Predict next state using Kalman filter"""
|
| 129 |
self.age += 1
|
| 130 |
self.time_since_update += 1
|
| 131 |
self.consecutive_misses += 1
|
| 132 |
|
| 133 |
+
# Predict with Kalman filter
|
| 134 |
+
self.kf.predict()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
def update(self, detection: Detection):
|
| 137 |
+
"""Update track with new detection"""
|
| 138 |
+
# Convert to center format
|
| 139 |
+
x1, y1, x2, y2 = detection.bbox
|
| 140 |
+
cx = (x1 + x2) / 2
|
| 141 |
+
cy = (y1 + y2) / 2
|
| 142 |
+
w = x2 - x1
|
| 143 |
+
h = y2 - y1
|
| 144 |
+
|
| 145 |
+
# Update Kalman filter
|
| 146 |
+
self.kf.update(np.array([cx, cy, w, h]))
|
| 147 |
+
|
| 148 |
+
# Update track state
|
| 149 |
+
self.detections.append(detection)
|
| 150 |
+
self.confidence = detection.confidence
|
| 151 |
+
self.avg_confidence = 0.9 * self.avg_confidence + 0.1 * self.confidence
|
| 152 |
+
|
| 153 |
+
self.hits += 1
|
| 154 |
+
self.time_since_update = 0
|
| 155 |
+
self.consecutive_misses = 0
|
| 156 |
+
|
| 157 |
+
# Update features
|
| 158 |
+
if hasattr(detection, 'features') and detection.features is not None:
|
| 159 |
+
self.features.append(detection.features)
|
| 160 |
+
|
| 161 |
+
# Update trajectory
|
| 162 |
+
self.trajectory.append((cx, cy))
|
| 163 |
+
|
| 164 |
+
# Confirm track
|
| 165 |
+
if self.state == 'tentative' and self.hits >= 3:
|
| 166 |
+
self.state = 'confirmed'
|
| 167 |
+
|
| 168 |
+
# Keep only recent detections
|
| 169 |
+
if len(self.detections) > 5:
|
| 170 |
+
for old_det in self.detections[:-5]:
|
| 171 |
+
if hasattr(old_det, 'image_crop'):
|
| 172 |
+
old_det.image_crop = None
|
| 173 |
+
self.detections = self.detections[-5:]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
def mark_missed(self):
|
| 176 |
"""Mark track as missed"""
|
| 177 |
+
if self.state == 'confirmed':
|
| 178 |
+
if self.consecutive_misses > 30 or self.time_since_update > 60:
|
|
|
|
|
|
|
|
|
|
| 179 |
self.state = 'deleted'
|
| 180 |
elif self.state == 'tentative':
|
| 181 |
+
if self.consecutive_misses > 5:
|
| 182 |
self.state = 'deleted'
|
| 183 |
+
|
| 184 |
+
def get_feature(self) -> Optional[np.ndarray]:
|
| 185 |
+
"""Get averaged appearance feature"""
|
| 186 |
+
if not self.features:
|
| 187 |
+
return None
|
| 188 |
+
# Use exponential moving average for recent features
|
| 189 |
+
features_array = np.array(list(self.features))
|
| 190 |
+
weights = np.exp(np.linspace(-1, 0, len(features_array)))
|
| 191 |
+
weights /= weights.sum()
|
| 192 |
+
return np.average(features_array, axis=0, weights=weights)
|
| 193 |
|
| 194 |
+
class DeepSORTTracker:
|
| 195 |
"""
|
| 196 |
+
DeepSORT Tracker combining Kalman filter motion model
|
| 197 |
+
with appearance feature matching
|
| 198 |
"""
|
| 199 |
def __init__(self,
|
| 200 |
+
max_iou_distance: float = 0.7,
|
| 201 |
+
max_age: int = 30,
|
| 202 |
+
n_init: int = 3,
|
| 203 |
+
nn_budget: int = 100,
|
| 204 |
+
use_appearance: bool = True):
|
| 205 |
+
"""
|
| 206 |
+
Args:
|
| 207 |
+
max_iou_distance: Maximum IoU distance for matching (0.7 = 30% IoU)
|
| 208 |
+
max_age: Maximum frames to keep lost tracks
|
| 209 |
+
n_init: Number of frames to confirm a track
|
| 210 |
+
nn_budget: Maximum size of appearance feature gallery
|
| 211 |
+
use_appearance: Whether to use appearance features
|
| 212 |
+
"""
|
| 213 |
+
self.max_iou_distance = max_iou_distance
|
| 214 |
+
self.max_age = max_age
|
| 215 |
+
self.n_init = n_init
|
| 216 |
+
self.nn_budget = nn_budget
|
| 217 |
self.use_appearance = use_appearance
|
| 218 |
|
| 219 |
+
self.tracks: List[DeepSORTTrack] = []
|
| 220 |
self.track_id_count = 1
|
| 221 |
|
| 222 |
+
# Gating thresholds
|
| 223 |
+
self.gating_threshold_iou = 0.3 # Minimum IoU for association
|
| 224 |
+
self.gating_threshold_appearance = 0.5 # Maximum cosine distance
|
| 225 |
|
| 226 |
+
def update(self, detections: List[Detection]) -> List[DeepSORTTrack]:
|
| 227 |
+
"""Update tracks with new detections"""
|
| 228 |
+
# Predict existing tracks
|
| 229 |
+
for track in self.tracks:
|
| 230 |
+
track.predict()
|
| 231 |
|
| 232 |
+
# Match detections to tracks
|
| 233 |
+
matches, unmatched_tracks, unmatched_detections = self._match(
|
| 234 |
+
detections, self.tracks
|
| 235 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
|
| 237 |
+
# Update matched tracks
|
| 238 |
+
for track_idx, det_idx in matches:
|
| 239 |
+
self.tracks[track_idx].update(detections[det_idx])
|
| 240 |
|
| 241 |
+
# Mark unmatched tracks as missed
|
| 242 |
+
for track_idx in unmatched_tracks:
|
| 243 |
+
self.tracks[track_idx].mark_missed()
|
| 244 |
+
|
| 245 |
+
# Create new tracks for unmatched detections
|
| 246 |
+
for det_idx in unmatched_detections:
|
| 247 |
+
self._initiate_track(detections[det_idx])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
|
| 249 |
+
# Remove deleted tracks
|
| 250 |
+
self.tracks = [t for t in self.tracks if t.state != 'deleted']
|
| 251 |
+
|
| 252 |
+
# Return confirmed tracks
|
| 253 |
+
return [t for t in self.tracks if t.state == 'confirmed']
|
| 254 |
|
| 255 |
+
def _match(self, detections: List[Detection], tracks: List[DeepSORTTrack]) -> Tuple:
|
| 256 |
+
"""
|
| 257 |
+
Match detections to tracks using cascade matching
|
| 258 |
+
Returns: (matches, unmatched_tracks, unmatched_detections)
|
| 259 |
+
"""
|
| 260 |
+
if not tracks or not detections:
|
| 261 |
+
return [], list(range(len(tracks))), list(range(len(detections)))
|
| 262 |
|
| 263 |
+
# Split tracks by state
|
| 264 |
+
confirmed_tracks = [i for i, t in enumerate(tracks) if t.state == 'confirmed']
|
| 265 |
+
unconfirmed_tracks = [i for i, t in enumerate(tracks) if t.state == 'tentative']
|
| 266 |
|
| 267 |
+
# Stage 1: Match confirmed tracks
|
| 268 |
+
matches_a, unmatched_tracks_a, unmatched_detections = \
|
| 269 |
+
self._matching_cascade(detections, tracks, confirmed_tracks)
|
| 270 |
|
| 271 |
+
# Stage 2: Match unconfirmed tracks
|
| 272 |
+
iou_track_candidates = unconfirmed_tracks + unmatched_tracks_a
|
| 273 |
|
| 274 |
+
# Filter detections used in stage 1
|
| 275 |
+
remaining_detections = [detections[i] for i in unmatched_detections]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
|
| 277 |
+
matches_b, unmatched_tracks_b, unmatched_detections_b = \
|
| 278 |
+
self._match_iou(remaining_detections, tracks, iou_track_candidates)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
|
| 280 |
+
# Remap indices for stage 2
|
| 281 |
+
matches_b = [(t, unmatched_detections[d]) for t, d in matches_b]
|
| 282 |
+
unmatched_detections = [unmatched_detections[i] for i in unmatched_detections_b]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
|
| 284 |
+
matches = matches_a + matches_b
|
| 285 |
+
unmatched_tracks = unmatched_tracks_b
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
|
| 287 |
+
return matches, unmatched_tracks, unmatched_detections
|
|
|
|
|
|
|
| 288 |
|
| 289 |
+
def _matching_cascade(self, detections: List[Detection],
|
| 290 |
+
tracks: List[DeepSORTTrack],
|
| 291 |
+
track_indices: List[int]) -> Tuple:
|
| 292 |
+
"""Cascade matching by time since update"""
|
| 293 |
+
matches = []
|
| 294 |
+
unmatched_detections = list(range(len(detections)))
|
| 295 |
+
|
| 296 |
+
# Group tracks by time since update
|
| 297 |
+
for level in range(self.max_age):
|
| 298 |
+
if len(unmatched_detections) == 0:
|
| 299 |
+
break
|
| 300 |
+
|
| 301 |
+
track_indices_l = [
|
| 302 |
+
k for k in track_indices
|
| 303 |
+
if tracks[k].time_since_update == level
|
| 304 |
+
]
|
| 305 |
+
|
| 306 |
+
if len(track_indices_l) == 0:
|
| 307 |
+
continue
|
| 308 |
|
| 309 |
+
# Match at this level
|
| 310 |
+
matches_l, _, unmatched_detections = self._match_features_and_iou(
|
| 311 |
+
[detections[i] for i in unmatched_detections],
|
| 312 |
+
tracks,
|
| 313 |
+
track_indices_l
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
# Remap detection indices
|
| 317 |
+
matches_l = [(t, unmatched_detections[d]) for t, d in matches_l]
|
| 318 |
+
matches.extend(matches_l)
|
| 319 |
+
|
| 320 |
+
# Update unmatched detections
|
| 321 |
+
unmatched_detections = [
|
| 322 |
+
unmatched_detections[i] for i in range(len(unmatched_detections))
|
| 323 |
+
if i not in [d for _, d in matches_l]
|
| 324 |
+
]
|
| 325 |
+
|
| 326 |
+
unmatched_tracks = [
|
| 327 |
+
k for k in track_indices
|
| 328 |
+
if k not in [t for t, _ in matches]
|
| 329 |
+
]
|
| 330 |
+
|
| 331 |
+
return matches, unmatched_tracks, unmatched_detections
|
| 332 |
+
|
| 333 |
+
def _match_features_and_iou(self, detections: List[Detection],
|
| 334 |
+
tracks: List[DeepSORTTrack],
|
| 335 |
+
track_indices: List[int]) -> Tuple:
|
| 336 |
+
"""Match using both appearance features and IoU"""
|
| 337 |
+
if not track_indices or not detections:
|
| 338 |
+
return [], track_indices, list(range(len(detections)))
|
| 339 |
+
|
| 340 |
+
# Calculate cost matrix
|
| 341 |
+
cost_matrix = np.zeros((len(track_indices), len(detections)))
|
| 342 |
+
|
| 343 |
+
for i, track_idx in enumerate(track_indices):
|
| 344 |
+
track = tracks[track_idx]
|
| 345 |
+
track_bbox = track.bbox
|
| 346 |
+
track_feature = track.get_feature()
|
| 347 |
+
|
| 348 |
+
for j, detection in enumerate(detections):
|
| 349 |
+
det_bbox = detection.bbox
|
| 350 |
|
| 351 |
+
# IoU cost
|
| 352 |
+
iou = self._iou(track_bbox, det_bbox)
|
| 353 |
+
iou_cost = 1 - iou
|
|
|
|
|
|
|
| 354 |
|
| 355 |
+
# Appearance cost
|
| 356 |
+
if self.use_appearance and track_feature is not None:
|
| 357 |
+
if hasattr(detection, 'features') and detection.features is not None:
|
| 358 |
+
cosine_dist = cosine(track_feature, detection.features)
|
| 359 |
+
appearance_cost = cosine_dist
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 360 |
else:
|
| 361 |
+
appearance_cost = 0.5 # Neutral if no features
|
| 362 |
+
else:
|
| 363 |
+
appearance_cost = 0.0
|
| 364 |
+
|
| 365 |
+
# Combined cost (weighted)
|
| 366 |
+
if self.use_appearance and track_feature is not None:
|
| 367 |
+
cost = 0.5 * iou_cost + 0.5 * appearance_cost
|
| 368 |
+
else:
|
| 369 |
+
cost = iou_cost
|
| 370 |
+
|
| 371 |
+
# Gating: set to infinity if outside thresholds
|
| 372 |
+
if iou < self.gating_threshold_iou:
|
| 373 |
+
cost = 1e6
|
| 374 |
+
if self.use_appearance and appearance_cost > self.gating_threshold_appearance:
|
| 375 |
+
cost = 1e6
|
| 376 |
+
|
| 377 |
+
cost_matrix[i, j] = cost
|
| 378 |
+
|
| 379 |
+
# Hungarian algorithm
|
| 380 |
+
row_indices, col_indices = linear_sum_assignment(cost_matrix)
|
| 381 |
|
| 382 |
+
matches = []
|
| 383 |
+
unmatched_tracks = list(range(len(track_indices)))
|
| 384 |
+
unmatched_detections = list(range(len(detections)))
|
| 385 |
+
|
| 386 |
+
for row, col in zip(row_indices, col_indices):
|
| 387 |
+
if cost_matrix[row, col] < 1e5:
|
| 388 |
+
matches.append((track_indices[row], col))
|
| 389 |
+
unmatched_tracks.remove(row)
|
| 390 |
+
unmatched_detections.remove(col)
|
| 391 |
+
|
| 392 |
+
unmatched_tracks = [track_indices[i] for i in unmatched_tracks]
|
| 393 |
+
|
| 394 |
+
return matches, unmatched_tracks, unmatched_detections
|
| 395 |
|
| 396 |
+
def _match_iou(self, detections: List[Detection],
|
| 397 |
+
tracks: List[DeepSORTTrack],
|
| 398 |
+
track_indices: List[int]) -> Tuple:
|
| 399 |
+
"""Simple IoU matching for unconfirmed tracks"""
|
| 400 |
+
if not track_indices or not detections:
|
| 401 |
+
return [], track_indices, list(range(len(detections)))
|
| 402 |
+
|
| 403 |
+
# IoU distance matrix
|
| 404 |
+
iou_matrix = np.zeros((len(track_indices), len(detections)))
|
| 405 |
+
|
| 406 |
+
for i, track_idx in enumerate(track_indices):
|
| 407 |
+
track = tracks[track_idx]
|
| 408 |
+
for j, detection in enumerate(detections):
|
| 409 |
+
iou = self._iou(track.bbox, detection.bbox)
|
| 410 |
+
iou_matrix[i, j] = 1 - iou
|
| 411 |
+
|
| 412 |
+
# Hungarian matching
|
| 413 |
+
row_indices, col_indices = linear_sum_assignment(iou_matrix)
|
| 414 |
+
|
| 415 |
+
matches = []
|
| 416 |
+
unmatched_tracks = list(range(len(track_indices)))
|
| 417 |
+
unmatched_detections = list(range(len(detections)))
|
| 418 |
+
|
| 419 |
+
for row, col in zip(row_indices, col_indices):
|
| 420 |
+
if iou_matrix[row, col] < self.max_iou_distance:
|
| 421 |
+
matches.append((track_indices[row], col))
|
| 422 |
+
unmatched_tracks.remove(row)
|
| 423 |
+
unmatched_detections.remove(col)
|
| 424 |
+
|
| 425 |
+
unmatched_tracks = [track_indices[i] for i in unmatched_tracks]
|
| 426 |
+
|
| 427 |
+
return matches, unmatched_tracks, unmatched_detections
|
| 428 |
+
|
| 429 |
+
def _initiate_track(self, detection: Detection):
|
| 430 |
+
"""Create new track"""
|
| 431 |
+
new_track = DeepSORTTrack(detection, self.track_id_count)
|
| 432 |
+
self.track_id_count += 1
|
| 433 |
+
self.tracks.append(new_track)
|
| 434 |
|
| 435 |
def _iou(self, bbox1: List[float], bbox2: List[float]) -> float:
|
| 436 |
+
"""Calculate IoU between two bboxes"""
|
| 437 |
try:
|
|
|
|
|
|
|
|
|
|
| 438 |
x1 = max(bbox1[0], bbox2[0])
|
| 439 |
y1 = max(bbox1[1], bbox2[1])
|
| 440 |
x2 = min(bbox1[2], bbox2[2])
|
|
|
|
| 444 |
return 0.0
|
| 445 |
|
| 446 |
intersection = (x2 - x1) * (y2 - y1)
|
| 447 |
+
area1 = (bbox1[2] - bbox1[0]) * (bbox1[3] - bbox1[1])
|
| 448 |
+
area2 = (bbox2[2] - bbox2[0]) * (bbox2[3] - bbox2[1])
|
| 449 |
union = area1 + area2 - intersection
|
| 450 |
|
| 451 |
+
return intersection / (union + 1e-6)
|
| 452 |
+
except:
|
|
|
|
| 453 |
return 0.0
|
| 454 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 455 |
def reset(self):
|
| 456 |
"""Reset tracker"""
|
| 457 |
self.tracks.clear()
|
| 458 |
self.track_id_count = 1
|
| 459 |
+
print("DeepSORT tracker reset")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 460 |
|
| 461 |
+
# Compatibility alias
|
| 462 |
+
SimpleTracker = DeepSORTTracker
|
| 463 |
+
RobustTracker = DeepSORTTracker
|