Spaces:
Sleeping
Sleeping
Create detection.py
Browse files- detection.py +95 -0
detection.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
from ultralytics import YOLO
|
| 5 |
+
from typing import List, Tuple, Optional
|
| 6 |
+
from dataclasses import dataclass
|
| 7 |
+
|
| 8 |
+
@dataclass
|
| 9 |
+
class Detection:
|
| 10 |
+
"""Simple detection data structure"""
|
| 11 |
+
bbox: List[float] # [x1, y1, x2, y2]
|
| 12 |
+
confidence: float
|
| 13 |
+
image_crop: Optional[np.ndarray] = None # Cropped dog image
|
| 14 |
+
|
| 15 |
+
class DogDetector:
|
| 16 |
+
"""
|
| 17 |
+
Simplified YOLOv8 detector optimized for dogs
|
| 18 |
+
Uses standard pretrained model - no custom training needed
|
| 19 |
+
"""
|
| 20 |
+
|
| 21 |
+
def __init__(self,
|
| 22 |
+
confidence_threshold: float = 0.45,
|
| 23 |
+
device: str = 'cuda'):
|
| 24 |
+
"""
|
| 25 |
+
Initialize detector
|
| 26 |
+
|
| 27 |
+
Args:
|
| 28 |
+
confidence_threshold: Min confidence for detections (0.45 works well)
|
| 29 |
+
device: 'cuda' for GPU, 'cpu' for CPU
|
| 30 |
+
"""
|
| 31 |
+
self.confidence_threshold = confidence_threshold
|
| 32 |
+
self.device = device if torch.cuda.is_available() else 'cpu'
|
| 33 |
+
|
| 34 |
+
# Load YOLOv8 medium model (good balance of speed/accuracy)
|
| 35 |
+
self.model = YOLO('yolov8m.pt')
|
| 36 |
+
self.model.to(self.device)
|
| 37 |
+
|
| 38 |
+
# COCO class ID for dog
|
| 39 |
+
self.dog_class_id = 16
|
| 40 |
+
|
| 41 |
+
def detect(self, frame: np.ndarray) -> List[Detection]:
|
| 42 |
+
"""
|
| 43 |
+
Detect dogs in frame
|
| 44 |
+
|
| 45 |
+
Args:
|
| 46 |
+
frame: BGR image from OpenCV
|
| 47 |
+
|
| 48 |
+
Returns:
|
| 49 |
+
List of Detection objects with bounding boxes and crops
|
| 50 |
+
"""
|
| 51 |
+
# Run YOLO inference
|
| 52 |
+
results = self.model(frame,
|
| 53 |
+
conf=self.confidence_threshold,
|
| 54 |
+
classes=[self.dog_class_id], # Only detect dogs
|
| 55 |
+
verbose=False)
|
| 56 |
+
|
| 57 |
+
detections = []
|
| 58 |
+
|
| 59 |
+
if results and len(results) > 0:
|
| 60 |
+
result = results[0]
|
| 61 |
+
if result.boxes is not None:
|
| 62 |
+
boxes = result.boxes
|
| 63 |
+
|
| 64 |
+
for i in range(len(boxes)):
|
| 65 |
+
# Get bbox coordinates
|
| 66 |
+
x1, y1, x2, y2 = boxes.xyxy[i].cpu().numpy()
|
| 67 |
+
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
|
| 68 |
+
|
| 69 |
+
# Ensure valid coordinates
|
| 70 |
+
h, w = frame.shape[:2]
|
| 71 |
+
x1 = max(0, x1)
|
| 72 |
+
y1 = max(0, y1)
|
| 73 |
+
x2 = min(w, x2)
|
| 74 |
+
y2 = min(h, y2)
|
| 75 |
+
|
| 76 |
+
# Skip invalid boxes
|
| 77 |
+
if x2 <= x1 or y2 <= y1:
|
| 78 |
+
continue
|
| 79 |
+
|
| 80 |
+
# Crop dog image
|
| 81 |
+
dog_crop = frame[y1:y2, x1:x2].copy()
|
| 82 |
+
|
| 83 |
+
# Create detection
|
| 84 |
+
detection = Detection(
|
| 85 |
+
bbox=[x1, y1, x2, y2],
|
| 86 |
+
confidence=float(boxes.conf[i]),
|
| 87 |
+
image_crop=dog_crop
|
| 88 |
+
)
|
| 89 |
+
detections.append(detection)
|
| 90 |
+
|
| 91 |
+
return detections
|
| 92 |
+
|
| 93 |
+
def set_confidence(self, threshold: float):
|
| 94 |
+
"""Update detection confidence threshold"""
|
| 95 |
+
self.confidence_threshold = max(0.1, min(1.0, threshold))
|