Spaces:
Sleeping
Sleeping
Update reid.py
Browse files
reid.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
"""
|
| 2 |
-
|
| 3 |
"""
|
| 4 |
import numpy as np
|
| 5 |
import cv2
|
|
@@ -20,89 +20,63 @@ class DogFeatures:
|
|
| 20 |
bbox: List[float] = field(default_factory=list)
|
| 21 |
confidence: float = 0.5
|
| 22 |
frame_num: int = 0
|
| 23 |
-
track_id: int = 0 # Add track ID for continuity
|
| 24 |
|
| 25 |
|
| 26 |
class MegaDescriptorReID:
|
| 27 |
"""
|
| 28 |
-
|
| 29 |
"""
|
| 30 |
|
| 31 |
-
def __init__(self, device: str = 'cuda'
|
| 32 |
self.device = device if torch.cuda.is_available() else 'cpu'
|
| 33 |
-
self.base_threshold = 0.
|
| 34 |
-
self.max_expected_dogs = max_expected_dogs
|
| 35 |
|
| 36 |
# Dog database (temporary only)
|
| 37 |
self.dog_database = {} # dog_id -> list of DogFeatures
|
| 38 |
self.next_dog_id = 1
|
| 39 |
self.current_frame = 0
|
| 40 |
|
| 41 |
-
# Track continuity mapping
|
| 42 |
-
self.track_to_dog = {} # track_id -> dog_id
|
| 43 |
-
self.dog_last_track = {} # dog_id -> last_track_id
|
| 44 |
-
|
| 45 |
# Statistics for debugging
|
| 46 |
self.match_stats = {
|
| 47 |
-
'
|
| 48 |
-
'
|
| 49 |
-
'
|
| 50 |
-
'track_continuity_matches': 0,
|
| 51 |
-
'similarity_scores': []
|
| 52 |
}
|
| 53 |
|
| 54 |
-
# Initialize MegaDescriptor
|
| 55 |
self._initialize_megadescriptor()
|
| 56 |
|
| 57 |
-
print(f"β
|
| 58 |
-
print(f" Device: {self.device}")
|
| 59 |
-
print(f" Max expected dogs: {self.max_expected_dogs}")
|
| 60 |
|
| 61 |
def _initialize_megadescriptor(self):
|
| 62 |
-
"""Initialize MegaDescriptor-
|
| 63 |
try:
|
|
|
|
|
|
|
| 64 |
self.model = timm.create_model(
|
| 65 |
-
'hf-hub:BVRA/MegaDescriptor-
|
| 66 |
pretrained=True
|
| 67 |
)
|
| 68 |
self.model.to(self.device).eval()
|
| 69 |
|
| 70 |
-
#
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
-
print("β
MegaDescriptor-
|
|
|
|
|
|
|
| 75 |
|
| 76 |
except Exception as e:
|
| 77 |
print(f"β MegaDescriptor initialization error: {e}")
|
| 78 |
self.model = None
|
| 79 |
|
| 80 |
-
def
|
| 81 |
-
"""
|
| 82 |
-
num_dogs = len(self.dog_database)
|
| 83 |
-
original_threshold = self.base_threshold
|
| 84 |
-
|
| 85 |
-
if num_dogs >= self.max_expected_dogs * 1.5:
|
| 86 |
-
# Way too many dogs, be very lenient
|
| 87 |
-
adapted = 0.25
|
| 88 |
-
elif num_dogs >= self.max_expected_dogs:
|
| 89 |
-
# Too many dogs, lower threshold
|
| 90 |
-
adapted = 0.30
|
| 91 |
-
elif num_dogs >= self.max_expected_dogs * 0.8:
|
| 92 |
-
# Approaching limit, start lowering
|
| 93 |
-
adapted = 0.35
|
| 94 |
-
else:
|
| 95 |
-
# Normal range
|
| 96 |
-
adapted = self.base_threshold
|
| 97 |
-
|
| 98 |
-
if adapted != original_threshold:
|
| 99 |
-
self.match_stats['threshold_adjustments'] += 1
|
| 100 |
-
print(f"π Adaptive threshold: {original_threshold:.2f} β {adapted:.2f} (dogs: {num_dogs})")
|
| 101 |
-
|
| 102 |
-
return adapted
|
| 103 |
-
|
| 104 |
-
def extract_features(self, image: np.ndarray, bbox: List[float] = None, track_id: int = None) -> Optional[DogFeatures]:
|
| 105 |
-
"""Extract features using MegaDescriptor"""
|
| 106 |
if image is None or image.size == 0 or self.model is None:
|
| 107 |
return None
|
| 108 |
|
|
@@ -114,7 +88,7 @@ class MegaDescriptorReID:
|
|
| 114 |
from PIL import Image
|
| 115 |
pil_img = Image.fromarray(img_rgb)
|
| 116 |
|
| 117 |
-
# Apply
|
| 118 |
img_tensor = self.transform(pil_img).unsqueeze(0).to(self.device)
|
| 119 |
|
| 120 |
# Extract features
|
|
@@ -127,8 +101,7 @@ class MegaDescriptorReID:
|
|
| 127 |
return DogFeatures(
|
| 128 |
features=features,
|
| 129 |
bbox=bbox if bbox else [0, 0, 100, 100],
|
| 130 |
-
frame_num=self.current_frame
|
| 131 |
-
track_id=track_id if track_id else 0
|
| 132 |
)
|
| 133 |
|
| 134 |
except Exception as e:
|
|
@@ -136,28 +109,9 @@ class MegaDescriptorReID:
|
|
| 136 |
return None
|
| 137 |
|
| 138 |
def match_or_register(self, track, image_crop=None) -> Tuple[int, float]:
|
| 139 |
-
"""
|
| 140 |
self.current_frame += 1
|
| 141 |
|
| 142 |
-
# Get track ID for continuity
|
| 143 |
-
track_id = track.track_id if hasattr(track, 'track_id') else 0
|
| 144 |
-
|
| 145 |
-
# Check if this track already has a dog ID (continuity)
|
| 146 |
-
if track_id in self.track_to_dog:
|
| 147 |
-
dog_id = self.track_to_dog[track_id]
|
| 148 |
-
self.match_stats['track_continuity_matches'] += 1
|
| 149 |
-
print(f" π Track continuity: Track {track_id} β Dog {dog_id}")
|
| 150 |
-
|
| 151 |
-
# Still extract and store features for future matching
|
| 152 |
-
for det in reversed(track.detections[-3:]):
|
| 153 |
-
if det.image_crop is not None:
|
| 154 |
-
features = self.extract_features(det.image_crop, det.bbox, track_id)
|
| 155 |
-
if features:
|
| 156 |
-
self._update_dog_features(dog_id, features)
|
| 157 |
-
break
|
| 158 |
-
|
| 159 |
-
return dog_id, 0.95 # High confidence for track continuity
|
| 160 |
-
|
| 161 |
# Get detection with image
|
| 162 |
detection = None
|
| 163 |
for det in reversed(track.detections[-3:]):
|
|
@@ -172,8 +126,7 @@ class MegaDescriptorReID:
|
|
| 172 |
# Extract features
|
| 173 |
features = self.extract_features(
|
| 174 |
image_crop,
|
| 175 |
-
detection.bbox if hasattr(detection, 'bbox') else None
|
| 176 |
-
track_id
|
| 177 |
)
|
| 178 |
|
| 179 |
if features is None:
|
|
@@ -181,18 +134,15 @@ class MegaDescriptorReID:
|
|
| 181 |
|
| 182 |
features.confidence = detection.confidence if hasattr(detection, 'confidence') else 0.5
|
| 183 |
|
| 184 |
-
# Get adaptive threshold
|
| 185 |
-
threshold = self.get_adaptive_threshold()
|
| 186 |
-
|
| 187 |
# Find best match
|
| 188 |
best_dog_id = None
|
| 189 |
best_score = -1.0
|
| 190 |
-
|
| 191 |
|
| 192 |
for dog_id, dog_features_list in self.dog_database.items():
|
| 193 |
# Calculate similarity with stored features
|
| 194 |
similarities = []
|
| 195 |
-
for stored_feat in dog_features_list[-
|
| 196 |
sim = cosine_similarity(
|
| 197 |
features.features.reshape(1, -1),
|
| 198 |
stored_feat.features.reshape(1, -1)
|
|
@@ -200,104 +150,53 @@ class MegaDescriptorReID:
|
|
| 200 |
similarities.append(sim)
|
| 201 |
|
| 202 |
if similarities:
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
|
|
|
| 207 |
|
| 208 |
-
|
| 209 |
|
| 210 |
-
if
|
| 211 |
-
best_score =
|
| 212 |
best_dog_id = dog_id
|
| 213 |
|
| 214 |
# Debug output
|
| 215 |
-
if
|
| 216 |
-
self.match_stats['
|
| 217 |
-
top_matches = sorted(
|
| 218 |
-
print(f" π
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
|
| 220 |
-
# Decision: match or new dog
|
| 221 |
if best_dog_id is not None and best_score >= threshold:
|
| 222 |
# Match found
|
| 223 |
-
self.match_stats['
|
| 224 |
-
print(f" β
Matched to Dog {best_dog_id}
|
| 225 |
-
|
| 226 |
-
# Update track mapping
|
| 227 |
-
self.track_to_dog[track_id] = best_dog_id
|
| 228 |
-
self.dog_last_track[best_dog_id] = track_id
|
| 229 |
|
| 230 |
# Update features
|
| 231 |
-
self.
|
|
|
|
|
|
|
|
|
|
| 232 |
|
| 233 |
return best_dog_id, best_score
|
| 234 |
else:
|
| 235 |
-
# Check if we should be more aggressive due to dog count
|
| 236 |
-
if len(self.dog_database) >= self.max_expected_dogs and best_score > 0.2:
|
| 237 |
-
# Force match if we have too many dogs and score is reasonable
|
| 238 |
-
print(f" β οΈ Forced match to Dog {best_dog_id} (too many dogs, score: {best_score:.3f})")
|
| 239 |
-
self.track_to_dog[track_id] = best_dog_id
|
| 240 |
-
self._update_dog_features(best_dog_id, features)
|
| 241 |
-
return best_dog_id, best_score
|
| 242 |
-
|
| 243 |
# New dog
|
| 244 |
-
new_dog_id = self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
return new_dog_id, 1.0
|
| 246 |
|
| 247 |
-
def _update_dog_features(self, dog_id: int, features: DogFeatures):
|
| 248 |
-
"""Update dog features database"""
|
| 249 |
-
self.dog_database[dog_id].append(features)
|
| 250 |
-
# Keep more features for better matching
|
| 251 |
-
if len(self.dog_database[dog_id]) > 30:
|
| 252 |
-
self.dog_database[dog_id] = self.dog_database[dog_id][-30:]
|
| 253 |
-
|
| 254 |
-
def _register_new_dog(self, features: DogFeatures, track_id: int) -> int:
|
| 255 |
-
"""Register a new dog"""
|
| 256 |
-
new_dog_id = self.next_dog_id
|
| 257 |
-
self.next_dog_id += 1
|
| 258 |
-
self.match_stats['new_dogs_created'] += 1
|
| 259 |
-
|
| 260 |
-
self.dog_database[new_dog_id] = [features]
|
| 261 |
-
self.track_to_dog[track_id] = new_dog_id
|
| 262 |
-
self.dog_last_track[new_dog_id] = track_id
|
| 263 |
-
|
| 264 |
-
print(f" π New dog registered: Dog {new_dog_id} (Total: {len(self.dog_database)})")
|
| 265 |
-
|
| 266 |
-
return new_dog_id
|
| 267 |
-
|
| 268 |
-
def post_process_merge(self, merge_threshold: float = 0.7):
|
| 269 |
-
"""Post-process to merge similar dogs"""
|
| 270 |
-
print("\nπ Post-processing: Checking for similar dogs to merge...")
|
| 271 |
-
|
| 272 |
-
merged_count = 0
|
| 273 |
-
dog_ids = list(self.dog_database.keys())
|
| 274 |
-
|
| 275 |
-
for i, dog1_id in enumerate(dog_ids):
|
| 276 |
-
if dog1_id not in self.dog_database:
|
| 277 |
-
continue
|
| 278 |
-
|
| 279 |
-
for dog2_id in dog_ids[i+1:]:
|
| 280 |
-
if dog2_id not in self.dog_database:
|
| 281 |
-
continue
|
| 282 |
-
|
| 283 |
-
# Compare average features
|
| 284 |
-
feat1 = np.mean([f.features for f in self.dog_database[dog1_id]], axis=0)
|
| 285 |
-
feat2 = np.mean([f.features for f in self.dog_database[dog2_id]], axis=0)
|
| 286 |
-
|
| 287 |
-
similarity = cosine_similarity(feat1.reshape(1, -1), feat2.reshape(1, -1))[0, 0]
|
| 288 |
-
|
| 289 |
-
if similarity > merge_threshold:
|
| 290 |
-
# Merge dog2 into dog1
|
| 291 |
-
print(f" π Merging Dog {dog2_id} into Dog {dog1_id} (similarity: {similarity:.3f})")
|
| 292 |
-
self.dog_database[dog1_id].extend(self.dog_database[dog2_id])
|
| 293 |
-
del self.dog_database[dog2_id]
|
| 294 |
-
merged_count += 1
|
| 295 |
-
|
| 296 |
-
if merged_count > 0:
|
| 297 |
-
print(f" β
Merged {merged_count} duplicate dogs. Final count: {len(self.dog_database)}")
|
| 298 |
-
|
| 299 |
-
return merged_count
|
| 300 |
-
|
| 301 |
def match_or_register_all(self, track) -> Dict:
|
| 302 |
"""Compatible interface"""
|
| 303 |
dog_id, confidence = self.match_or_register(track)
|
|
@@ -309,36 +208,39 @@ class MegaDescriptorReID:
|
|
| 309 |
}
|
| 310 |
|
| 311 |
def set_all_thresholds(self, threshold: float):
|
| 312 |
-
"""Update
|
| 313 |
self.base_threshold = max(0.15, min(0.95, threshold))
|
| 314 |
-
print(f"π
|
| 315 |
|
| 316 |
def reset_all(self):
|
| 317 |
"""Reset for new video"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 318 |
self.dog_database.clear()
|
| 319 |
-
self.track_to_dog.clear()
|
| 320 |
-
self.dog_last_track.clear()
|
| 321 |
self.next_dog_id = 1
|
| 322 |
self.current_frame = 0
|
| 323 |
|
| 324 |
-
# Print debug statistics before reset
|
| 325 |
-
if self.match_stats['new_dogs_created'] > 0:
|
| 326 |
-
print("\nπ Session Statistics:")
|
| 327 |
-
print(f" β’ New dogs created: {self.match_stats['new_dogs_created']}")
|
| 328 |
-
print(f" β’ Successful matches: {self.match_stats['successful_matches']}")
|
| 329 |
-
print(f" β’ Track continuity matches: {self.match_stats['track_continuity_matches']}")
|
| 330 |
-
print(f" β’ Threshold adjustments: {self.match_stats['threshold_adjustments']}")
|
| 331 |
-
if self.match_stats['similarity_scores']:
|
| 332 |
-
scores = self.match_stats['similarity_scores']
|
| 333 |
-
print(f" β’ Avg similarity: {np.mean(scores):.3f} (min: {np.min(scores):.3f}, max: {np.max(scores):.3f})")
|
| 334 |
-
|
| 335 |
# Reset statistics
|
| 336 |
self.match_stats = {
|
| 337 |
-
'
|
| 338 |
-
'
|
| 339 |
-
'
|
| 340 |
-
'track_continuity_matches': 0,
|
| 341 |
-
'similarity_scores': []
|
| 342 |
}
|
| 343 |
|
| 344 |
print("π ReID reset\n")
|
|
@@ -348,17 +250,8 @@ class MegaDescriptorReID:
|
|
| 348 |
return {
|
| 349 |
'total_dogs': len(self.dog_database),
|
| 350 |
'threshold': self.base_threshold,
|
| 351 |
-
'
|
| 352 |
}
|
| 353 |
-
def aggressive_merge(self):
|
| 354 |
-
"""Keep merging until no more merges possible"""
|
| 355 |
-
total_merged = 0
|
| 356 |
-
while True:
|
| 357 |
-
merged = self.post_process_merge(merge_threshold=0.5)
|
| 358 |
-
if merged == 0:
|
| 359 |
-
break
|
| 360 |
-
total_merged += merged
|
| 361 |
-
return total_merged
|
| 362 |
|
| 363 |
|
| 364 |
# Compatibility aliases
|
|
|
|
| 1 |
"""
|
| 2 |
+
Simplified ReID with MegaDescriptor-L-384 (Largest Model)
|
| 3 |
"""
|
| 4 |
import numpy as np
|
| 5 |
import cv2
|
|
|
|
| 20 |
bbox: List[float] = field(default_factory=list)
|
| 21 |
confidence: float = 0.5
|
| 22 |
frame_num: int = 0
|
|
|
|
| 23 |
|
| 24 |
|
| 25 |
class MegaDescriptorReID:
|
| 26 |
"""
|
| 27 |
+
Simplified ReID using MegaDescriptor-L-384
|
| 28 |
"""
|
| 29 |
|
| 30 |
+
def __init__(self, device: str = 'cuda'):
|
| 31 |
self.device = device if torch.cuda.is_available() else 'cpu'
|
| 32 |
+
self.base_threshold = 0.35 # Lower default for L model
|
|
|
|
| 33 |
|
| 34 |
# Dog database (temporary only)
|
| 35 |
self.dog_database = {} # dog_id -> list of DogFeatures
|
| 36 |
self.next_dog_id = 1
|
| 37 |
self.current_frame = 0
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
# Statistics for debugging
|
| 40 |
self.match_stats = {
|
| 41 |
+
'new_dogs': [],
|
| 42 |
+
'matches': [],
|
| 43 |
+
'all_scores': []
|
|
|
|
|
|
|
| 44 |
}
|
| 45 |
|
| 46 |
+
# Initialize MegaDescriptor-L
|
| 47 |
self._initialize_megadescriptor()
|
| 48 |
|
| 49 |
+
print(f"β
MegaDescriptor-L-384 ReID initialized on {self.device}")
|
|
|
|
|
|
|
| 50 |
|
| 51 |
def _initialize_megadescriptor(self):
|
| 52 |
+
"""Initialize MegaDescriptor-L-384 (Largest model)"""
|
| 53 |
try:
|
| 54 |
+
# Load the largest MegaDescriptor model
|
| 55 |
+
print("π₯ Loading MegaDescriptor-L-384 (this may take a moment)...")
|
| 56 |
self.model = timm.create_model(
|
| 57 |
+
'hf-hub:BVRA/MegaDescriptor-L-384',
|
| 58 |
pretrained=True
|
| 59 |
)
|
| 60 |
self.model.to(self.device).eval()
|
| 61 |
|
| 62 |
+
# L model uses 384x384 input
|
| 63 |
+
self.transform = timm.data.create_transform(
|
| 64 |
+
input_size=(384, 384),
|
| 65 |
+
is_training=False,
|
| 66 |
+
mean=[0.5, 0.5, 0.5],
|
| 67 |
+
std=[0.5, 0.5, 0.5]
|
| 68 |
+
)
|
| 69 |
|
| 70 |
+
print("β
MegaDescriptor-L-384 loaded successfully")
|
| 71 |
+
print(" β’ Model: Large (384x384 input)")
|
| 72 |
+
print(" β’ Features: 1024-dim")
|
| 73 |
|
| 74 |
except Exception as e:
|
| 75 |
print(f"β MegaDescriptor initialization error: {e}")
|
| 76 |
self.model = None
|
| 77 |
|
| 78 |
+
def extract_features(self, image: np.ndarray, bbox: List[float] = None) -> Optional[DogFeatures]:
|
| 79 |
+
"""Extract features using MegaDescriptor-L"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
if image is None or image.size == 0 or self.model is None:
|
| 81 |
return None
|
| 82 |
|
|
|
|
| 88 |
from PIL import Image
|
| 89 |
pil_img = Image.fromarray(img_rgb)
|
| 90 |
|
| 91 |
+
# Apply transforms (384x384 for L model)
|
| 92 |
img_tensor = self.transform(pil_img).unsqueeze(0).to(self.device)
|
| 93 |
|
| 94 |
# Extract features
|
|
|
|
| 101 |
return DogFeatures(
|
| 102 |
features=features,
|
| 103 |
bbox=bbox if bbox else [0, 0, 100, 100],
|
| 104 |
+
frame_num=self.current_frame
|
|
|
|
| 105 |
)
|
| 106 |
|
| 107 |
except Exception as e:
|
|
|
|
| 109 |
return None
|
| 110 |
|
| 111 |
def match_or_register(self, track, image_crop=None) -> Tuple[int, float]:
|
| 112 |
+
"""Simple match or register without complex strategies"""
|
| 113 |
self.current_frame += 1
|
| 114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
# Get detection with image
|
| 116 |
detection = None
|
| 117 |
for det in reversed(track.detections[-3:]):
|
|
|
|
| 126 |
# Extract features
|
| 127 |
features = self.extract_features(
|
| 128 |
image_crop,
|
| 129 |
+
detection.bbox if hasattr(detection, 'bbox') else None
|
|
|
|
| 130 |
)
|
| 131 |
|
| 132 |
if features is None:
|
|
|
|
| 134 |
|
| 135 |
features.confidence = detection.confidence if hasattr(detection, 'confidence') else 0.5
|
| 136 |
|
|
|
|
|
|
|
|
|
|
| 137 |
# Find best match
|
| 138 |
best_dog_id = None
|
| 139 |
best_score = -1.0
|
| 140 |
+
debug_scores = []
|
| 141 |
|
| 142 |
for dog_id, dog_features_list in self.dog_database.items():
|
| 143 |
# Calculate similarity with stored features
|
| 144 |
similarities = []
|
| 145 |
+
for stored_feat in dog_features_list[-20:]: # Use last 20 features
|
| 146 |
sim = cosine_similarity(
|
| 147 |
features.features.reshape(1, -1),
|
| 148 |
stored_feat.features.reshape(1, -1)
|
|
|
|
| 150 |
similarities.append(sim)
|
| 151 |
|
| 152 |
if similarities:
|
| 153 |
+
# Use max similarity for L model (more discriminative)
|
| 154 |
+
max_sim = np.max(similarities)
|
| 155 |
+
avg_sim = np.mean(similarities)
|
| 156 |
+
# Weight max more for L model
|
| 157 |
+
final_score = 0.6 * max_sim + 0.4 * avg_sim
|
| 158 |
|
| 159 |
+
debug_scores.append((dog_id, final_score, max_sim, avg_sim))
|
| 160 |
|
| 161 |
+
if final_score > best_score:
|
| 162 |
+
best_score = final_score
|
| 163 |
best_dog_id = dog_id
|
| 164 |
|
| 165 |
# Debug output
|
| 166 |
+
if debug_scores:
|
| 167 |
+
self.match_stats['all_scores'].append(best_score)
|
| 168 |
+
top_matches = sorted(debug_scores, key=lambda x: x[1], reverse=True)[:3]
|
| 169 |
+
print(f" π Frame {self.current_frame} matches:")
|
| 170 |
+
for dog_id, final, max_s, avg_s in top_matches[:3]:
|
| 171 |
+
print(f" Dog {dog_id}: {final:.3f} (max:{max_s:.3f}, avg:{avg_s:.3f})")
|
| 172 |
+
|
| 173 |
+
# Simple decision with threshold
|
| 174 |
+
threshold = self.base_threshold
|
| 175 |
+
print(f" π Best score: {best_score:.3f}, Threshold: {threshold:.3f}")
|
| 176 |
|
|
|
|
| 177 |
if best_dog_id is not None and best_score >= threshold:
|
| 178 |
# Match found
|
| 179 |
+
self.match_stats['matches'].append((best_dog_id, best_score))
|
| 180 |
+
print(f" β
Matched to Dog {best_dog_id}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
# Update features
|
| 183 |
+
self.dog_database[best_dog_id].append(features)
|
| 184 |
+
# Keep last 30 features
|
| 185 |
+
if len(self.dog_database[best_dog_id]) > 30:
|
| 186 |
+
self.dog_database[best_dog_id] = self.dog_database[best_dog_id][-30:]
|
| 187 |
|
| 188 |
return best_dog_id, best_score
|
| 189 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
# New dog
|
| 191 |
+
new_dog_id = self.next_dog_id
|
| 192 |
+
self.next_dog_id += 1
|
| 193 |
+
self.match_stats['new_dogs'].append(new_dog_id)
|
| 194 |
+
|
| 195 |
+
self.dog_database[new_dog_id] = [features]
|
| 196 |
+
print(f" π New dog: Dog {new_dog_id} (Total: {len(self.dog_database)})")
|
| 197 |
+
|
| 198 |
return new_dog_id, 1.0
|
| 199 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
def match_or_register_all(self, track) -> Dict:
|
| 201 |
"""Compatible interface"""
|
| 202 |
dog_id, confidence = self.match_or_register(track)
|
|
|
|
| 208 |
}
|
| 209 |
|
| 210 |
def set_all_thresholds(self, threshold: float):
|
| 211 |
+
"""Update threshold"""
|
| 212 |
self.base_threshold = max(0.15, min(0.95, threshold))
|
| 213 |
+
print(f"π ReID threshold set to: {self.base_threshold:.2f}")
|
| 214 |
|
| 215 |
def reset_all(self):
|
| 216 |
"""Reset for new video"""
|
| 217 |
+
# Print final statistics
|
| 218 |
+
if self.dog_database:
|
| 219 |
+
print("\n" + "="*50)
|
| 220 |
+
print("π Final Session Statistics:")
|
| 221 |
+
print(f" β’ Total dogs detected: {len(self.dog_database)}")
|
| 222 |
+
print(f" β’ New dog creations: {len(self.match_stats['new_dogs'])}")
|
| 223 |
+
print(f" β’ Successful matches: {len(self.match_stats['matches'])}")
|
| 224 |
+
|
| 225 |
+
if self.match_stats['all_scores']:
|
| 226 |
+
scores = self.match_stats['all_scores']
|
| 227 |
+
print(f" β’ Match scores - Avg: {np.mean(scores):.3f}, Min: {np.min(scores):.3f}, Max: {np.max(scores):.3f}")
|
| 228 |
+
|
| 229 |
+
print("\n Dogs summary:")
|
| 230 |
+
for dog_id, features_list in self.dog_database.items():
|
| 231 |
+
print(f" Dog {dog_id}: {len(features_list)} features stored")
|
| 232 |
+
print("="*50 + "\n")
|
| 233 |
+
|
| 234 |
+
# Clear everything
|
| 235 |
self.dog_database.clear()
|
|
|
|
|
|
|
| 236 |
self.next_dog_id = 1
|
| 237 |
self.current_frame = 0
|
| 238 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
# Reset statistics
|
| 240 |
self.match_stats = {
|
| 241 |
+
'new_dogs': [],
|
| 242 |
+
'matches': [],
|
| 243 |
+
'all_scores': []
|
|
|
|
|
|
|
| 244 |
}
|
| 245 |
|
| 246 |
print("π ReID reset\n")
|
|
|
|
| 250 |
return {
|
| 251 |
'total_dogs': len(self.dog_database),
|
| 252 |
'threshold': self.base_threshold,
|
| 253 |
+
'model': 'MegaDescriptor-L-384'
|
| 254 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
|
| 256 |
|
| 257 |
# Compatibility aliases
|