Spaces:
Sleeping
Sleeping
Update tracking.py
Browse files- tracking.py +229 -162
tracking.py
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
"""
|
| 2 |
-
|
| 3 |
-
Includes all bug fixes and defensive programming
|
| 4 |
"""
|
| 5 |
import numpy as np
|
| 6 |
from typing import List, Optional, Tuple, Dict
|
|
@@ -11,12 +10,9 @@ from detection import Detection
|
|
| 11 |
import warnings
|
| 12 |
warnings.filterwarnings('ignore')
|
| 13 |
|
| 14 |
-
|
| 15 |
class Track:
|
| 16 |
-
"""Enhanced track with
|
| 17 |
-
|
| 18 |
def __init__(self, detection: Detection, track_id: Optional[int] = None):
|
| 19 |
-
"""Initialize track from first detection"""
|
| 20 |
self.track_id = track_id if track_id else self._generate_id()
|
| 21 |
self.bbox = detection.bbox.copy() if hasattr(detection, 'bbox') else [0, 0, 100, 100]
|
| 22 |
self.detections = [detection]
|
|
@@ -29,6 +25,11 @@ class Track:
|
|
| 29 |
self.hits = 1
|
| 30 |
self.consecutive_misses = 0
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
# Store center points for trajectory
|
| 33 |
cx = (self.bbox[0] + self.bbox[2]) / 2
|
| 34 |
cy = (self.bbox[1] + self.bbox[3]) / 2
|
|
@@ -39,54 +40,87 @@ class Track:
|
|
| 39 |
self.velocity = np.array([0.0, 0.0])
|
| 40 |
self.acceleration = np.array([0.0, 0.0])
|
| 41 |
|
| 42 |
-
# Appearance features
|
| 43 |
self.appearance_features = []
|
| 44 |
if hasattr(detection, 'features'):
|
| 45 |
self.appearance_features.append(detection.features)
|
| 46 |
-
|
| 47 |
-
# Size tracking
|
| 48 |
self.sizes = deque(maxlen=10)
|
| 49 |
width = max(1, self.bbox[2] - self.bbox[0])
|
| 50 |
height = max(1, self.bbox[3] - self.bbox[1])
|
| 51 |
self.sizes.append((width, height))
|
|
|
|
| 52 |
|
| 53 |
# Track quality metrics
|
| 54 |
self.avg_confidence = self.confidence
|
| 55 |
self.max_confidence = self.confidence
|
| 56 |
-
|
|
|
|
|
|
|
| 57 |
def _generate_id(self) -> int:
|
| 58 |
-
"""Generate unique track ID"""
|
| 59 |
return int(uuid.uuid4().int % 100000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
|
|
|
|
|
|
| 61 |
def predict(self):
|
| 62 |
-
"""Enhanced motion prediction
|
| 63 |
self.age += 1
|
| 64 |
self.time_since_update += 1
|
| 65 |
self.consecutive_misses += 1
|
| 66 |
|
| 67 |
try:
|
| 68 |
if len(self.trajectory) >= 3:
|
| 69 |
-
# Calculate velocity and acceleration from recent positions
|
| 70 |
positions = np.array(list(self.trajectory))[-3:]
|
| 71 |
-
|
| 72 |
-
# Velocity from last two positions
|
| 73 |
self.velocity = positions[-1] - positions[-2]
|
| 74 |
|
| 75 |
-
# Limit velocity
|
| 76 |
-
max_velocity = 50
|
| 77 |
velocity_magnitude = np.linalg.norm(self.velocity)
|
| 78 |
if velocity_magnitude > max_velocity:
|
| 79 |
self.velocity = self.velocity / velocity_magnitude * max_velocity
|
| 80 |
|
| 81 |
-
# Acceleration from velocity change
|
| 82 |
if len(positions) == 3:
|
| 83 |
prev_velocity = positions[-2] - positions[-3]
|
| 84 |
self.acceleration = (self.velocity - prev_velocity) * 0.3
|
| 85 |
|
| 86 |
-
# Predict next position with damping
|
| 87 |
predicted_pos = positions[-1] + self.velocity * 0.7 + self.acceleration * 0.1
|
| 88 |
|
| 89 |
-
# Get average recent size for stable bbox
|
| 90 |
if self.sizes:
|
| 91 |
avg_width = np.mean([s[0] for s in self.sizes])
|
| 92 |
avg_height = np.mean([s[1] for s in self.sizes])
|
|
@@ -94,7 +128,6 @@ class Track:
|
|
| 94 |
avg_width = max(10, self.bbox[2] - self.bbox[0])
|
| 95 |
avg_height = max(10, self.bbox[3] - self.bbox[1])
|
| 96 |
|
| 97 |
-
# Update bbox with predicted center and smoothed size
|
| 98 |
self.bbox = [
|
| 99 |
predicted_pos[0] - avg_width/2,
|
| 100 |
predicted_pos[1] - avg_height/2,
|
|
@@ -102,29 +135,38 @@ class Track:
|
|
| 102 |
predicted_pos[1] + avg_height/2
|
| 103 |
]
|
| 104 |
except Exception as e:
|
| 105 |
-
# Fallback: Keep current bbox
|
| 106 |
-
print(f"Track prediction error: {e}")
|
| 107 |
pass
|
| 108 |
-
|
| 109 |
def update(self, detection: Detection):
|
| 110 |
-
"""Update track with
|
| 111 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
# Update bbox
|
| 113 |
if hasattr(detection, 'bbox'):
|
| 114 |
self.bbox = detection.bbox.copy()
|
| 115 |
-
|
| 116 |
-
self.detections.append(detection)
|
| 117 |
|
| 118 |
# Update confidence
|
| 119 |
if hasattr(detection, 'confidence'):
|
| 120 |
self.confidence = detection.confidence
|
| 121 |
-
self.
|
|
|
|
| 122 |
self.max_confidence = max(self.max_confidence, self.confidence)
|
| 123 |
|
| 124 |
self.hits += 1
|
| 125 |
self.time_since_update = 0
|
| 126 |
self.consecutive_misses = 0
|
| 127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
# Update trajectory
|
| 129 |
cx = (self.bbox[0] + self.bbox[2]) / 2
|
| 130 |
cy = (self.bbox[1] + self.bbox[3]) / 2
|
|
@@ -135,59 +177,52 @@ class Track:
|
|
| 135 |
height = max(1, self.bbox[3] - self.bbox[1])
|
| 136 |
self.sizes.append((width, height))
|
| 137 |
|
| 138 |
-
# Store appearance features
|
| 139 |
if hasattr(detection, 'features'):
|
| 140 |
self.appearance_features.append(detection.features)
|
| 141 |
if len(self.appearance_features) > 5:
|
| 142 |
self.appearance_features = self.appearance_features[-5:]
|
| 143 |
|
| 144 |
-
# Confirm track after
|
| 145 |
-
if self.state == 'tentative'
|
| 146 |
self.state = 'confirmed'
|
| 147 |
-
|
| 148 |
-
# Keep only recent detections
|
| 149 |
if len(self.detections) > 5:
|
| 150 |
-
# Clear old detection images to save memory
|
| 151 |
for old_det in self.detections[:-5]:
|
| 152 |
if hasattr(old_det, 'image_crop'):
|
| 153 |
old_det.image_crop = None
|
| 154 |
self.detections = self.detections[-5:]
|
| 155 |
-
|
| 156 |
except Exception as e:
|
| 157 |
print(f"Track update error: {e}")
|
| 158 |
-
|
| 159 |
def mark_missed(self):
|
| 160 |
-
"""Mark track as missed
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
if self.consecutive_misses >
|
| 164 |
self.state = 'deleted'
|
| 165 |
-
elif self.time_since_update >
|
| 166 |
self.state = 'deleted'
|
| 167 |
elif self.state == 'tentative':
|
| 168 |
if self.consecutive_misses > 3:
|
| 169 |
self.state = 'deleted'
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
|
| 172 |
-
class
|
| 173 |
"""
|
| 174 |
-
|
| 175 |
"""
|
| 176 |
-
|
| 177 |
def __init__(self,
|
| 178 |
match_threshold: float = 0.35,
|
| 179 |
-
track_buffer: int = 30
|
| 180 |
min_iou_for_match: float = 0.15,
|
| 181 |
use_appearance: bool = False):
|
| 182 |
-
"""
|
| 183 |
-
Initialize tracker with safe defaults
|
| 184 |
|
| 185 |
-
Args:
|
| 186 |
-
match_threshold: IoU threshold for matching (0.35 is balanced)
|
| 187 |
-
track_buffer: Frames to keep lost tracks
|
| 188 |
-
min_iou_for_match: Minimum IoU to consider a match
|
| 189 |
-
use_appearance: Whether to use appearance features (set False for speed)
|
| 190 |
-
"""
|
| 191 |
self.match_threshold = match_threshold
|
| 192 |
self.track_buffer = track_buffer
|
| 193 |
self.min_iou_for_match = min_iou_for_match
|
|
@@ -196,24 +231,90 @@ class RobustTracker:
|
|
| 196 |
self.tracks: List[Track] = []
|
| 197 |
self.track_id_count = 1
|
| 198 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
# Enhanced parameters
|
| 200 |
-
self.max_center_distance =
|
| 201 |
-
self.min_size_similarity = 0.4
|
| 202 |
|
| 203 |
-
# Debug mode
|
| 204 |
self.debug = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
|
| 206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
"""
|
| 208 |
-
|
|
|
|
| 209 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
if not detections:
|
| 211 |
-
# No detections - just predict existing tracks
|
| 212 |
for track in self.tracks:
|
| 213 |
track.predict()
|
| 214 |
track.mark_missed()
|
| 215 |
|
| 216 |
-
#
|
|
|
|
|
|
|
| 217 |
self.tracks = [t for t in self.tracks if t.state != 'deleted']
|
| 218 |
return [t for t in self.tracks if t.state == 'confirmed']
|
| 219 |
|
|
@@ -221,31 +322,29 @@ class RobustTracker:
|
|
| 221 |
# Predict existing tracks
|
| 222 |
for track in self.tracks:
|
| 223 |
track.predict()
|
| 224 |
-
|
| 225 |
# Split tracks by state
|
| 226 |
confirmed_tracks = [t for t in self.tracks if t.state == 'confirmed']
|
| 227 |
tentative_tracks = [t for t in self.tracks if t.state == 'tentative']
|
| 228 |
|
| 229 |
-
# Initialize matched indices
|
| 230 |
matched_track_indices = set()
|
| 231 |
matched_det_indices = set()
|
| 232 |
|
| 233 |
-
# Stage 1: Match confirmed tracks
|
| 234 |
if confirmed_tracks and detections:
|
| 235 |
matched_track_indices, matched_det_indices = self._associate_tracks(
|
| 236 |
-
confirmed_tracks, detections,
|
| 237 |
matched_track_indices, matched_det_indices,
|
| 238 |
threshold_mult=1.0
|
| 239 |
)
|
| 240 |
|
| 241 |
-
# Stage 2: Match tentative tracks
|
| 242 |
if tentative_tracks:
|
| 243 |
-
unmatched_dets = [detections[i] for i in range(len(detections))
|
| 244 |
if i not in matched_det_indices]
|
| 245 |
|
| 246 |
if unmatched_dets:
|
| 247 |
-
|
| 248 |
-
temp_det_mapping = [i for i in range(len(detections))
|
| 249 |
if i not in matched_det_indices]
|
| 250 |
|
| 251 |
tent_matched_tracks, tent_matched_dets = self._associate_tracks(
|
|
@@ -254,114 +353,101 @@ class RobustTracker:
|
|
| 254 |
threshold_mult=0.7
|
| 255 |
)
|
| 256 |
|
| 257 |
-
# Map back to original detection indices
|
| 258 |
for det_idx in tent_matched_dets:
|
| 259 |
matched_det_indices.add(temp_det_mapping[det_idx])
|
| 260 |
|
| 261 |
-
# Mark unmatched tracks
|
| 262 |
for i, track in enumerate(confirmed_tracks):
|
| 263 |
if i not in matched_track_indices:
|
| 264 |
track.mark_missed()
|
| 265 |
-
|
| 266 |
for track in tentative_tracks:
|
| 267 |
if track.time_since_update > 0:
|
| 268 |
track.mark_missed()
|
| 269 |
|
| 270 |
-
# Create new tracks
|
| 271 |
for det_idx in range(len(detections)):
|
| 272 |
if det_idx not in matched_det_indices:
|
| 273 |
detection = detections[det_idx]
|
| 274 |
|
| 275 |
-
# Check
|
| 276 |
-
if self.
|
| 277 |
new_track = Track(detection, self.track_id_count)
|
| 278 |
self.track_id_count += 1
|
| 279 |
self.tracks.append(new_track)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
|
| 281 |
# Remove deleted tracks
|
| 282 |
self.tracks = [t for t in self.tracks if t.state != 'deleted']
|
| 283 |
|
| 284 |
-
# Return only confirmed tracks
|
| 285 |
-
return [t for t in self.tracks if t.state == 'confirmed']
|
| 286 |
-
|
| 287 |
except Exception as e:
|
| 288 |
print(f"Tracker update error: {e}")
|
| 289 |
-
# Return existing confirmed tracks as fallback
|
| 290 |
return [t for t in self.tracks if t.state == 'confirmed']
|
| 291 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 292 |
def _associate_tracks(self, tracks: List[Track], detections: List[Detection],
|
| 293 |
existing_matched_tracks: set, existing_matched_dets: set,
|
| 294 |
threshold_mult: float = 1.0) -> Tuple[set, set]:
|
| 295 |
-
"""
|
| 296 |
-
Safe track-detection association
|
| 297 |
-
|
| 298 |
-
Returns:
|
| 299 |
-
(matched_track_indices, matched_det_indices)
|
| 300 |
-
"""
|
| 301 |
if not tracks or not detections:
|
| 302 |
return existing_matched_tracks, existing_matched_dets
|
| 303 |
-
|
| 304 |
try:
|
| 305 |
-
# Calculate cost matrix
|
| 306 |
cost_matrix = self._calculate_enhanced_cost_matrix(tracks, detections)
|
| 307 |
|
| 308 |
if cost_matrix.size == 0:
|
| 309 |
return existing_matched_tracks, existing_matched_dets
|
| 310 |
|
| 311 |
-
# Hungarian matching
|
| 312 |
row_ind, col_ind = linear_sum_assignment(cost_matrix)
|
| 313 |
|
| 314 |
matched_tracks = existing_matched_tracks.copy()
|
| 315 |
matched_dets = existing_matched_dets.copy()
|
| 316 |
|
| 317 |
-
# Process matches
|
| 318 |
for r, c in zip(row_ind, col_ind):
|
| 319 |
-
# Check bounds
|
| 320 |
if r >= len(tracks) or c >= len(detections):
|
| 321 |
continue
|
| 322 |
-
|
| 323 |
-
# Check cost threshold
|
| 324 |
threshold = (1 - self.match_threshold * threshold_mult)
|
| 325 |
if cost_matrix[r, c] < threshold:
|
| 326 |
tracks[r].update(detections[c])
|
| 327 |
matched_tracks.add(r)
|
| 328 |
matched_dets.add(c)
|
| 329 |
-
|
| 330 |
-
return matched_tracks, matched_dets
|
| 331 |
|
|
|
|
|
|
|
| 332 |
except Exception as e:
|
| 333 |
print(f"Association error: {e}")
|
| 334 |
return existing_matched_tracks, existing_matched_dets
|
| 335 |
|
| 336 |
-
def _is_new_track(self, detection: Detection) -> bool:
|
| 337 |
-
"""Check if detection represents a new track"""
|
| 338 |
-
try:
|
| 339 |
-
det_center = self._get_center(detection.bbox)
|
| 340 |
-
|
| 341 |
-
for track in self.tracks:
|
| 342 |
-
if track.state == 'deleted':
|
| 343 |
-
continue
|
| 344 |
-
|
| 345 |
-
track_center = self._get_center(track.bbox)
|
| 346 |
-
dist = np.linalg.norm(np.array(det_center) - np.array(track_center))
|
| 347 |
-
|
| 348 |
-
# Very close to existing track - likely same object
|
| 349 |
-
if dist < 30:
|
| 350 |
-
return False
|
| 351 |
-
|
| 352 |
-
return True
|
| 353 |
-
|
| 354 |
-
except Exception as e:
|
| 355 |
-
print(f"New track check error: {e}")
|
| 356 |
-
return True # Default to creating new track
|
| 357 |
-
|
| 358 |
def _calculate_enhanced_cost_matrix(self, tracks: List[Track],
|
| 359 |
detections: List[Detection]) -> np.ndarray:
|
| 360 |
-
"""Calculate cost matrix
|
| 361 |
try:
|
| 362 |
if not tracks or not detections:
|
| 363 |
return np.array([])
|
| 364 |
-
|
| 365 |
n_tracks = len(tracks)
|
| 366 |
n_dets = len(detections)
|
| 367 |
cost_matrix = np.ones((n_tracks, n_dets))
|
|
@@ -369,7 +455,7 @@ class RobustTracker:
|
|
| 369 |
for t_idx, track in enumerate(tracks):
|
| 370 |
if not hasattr(track, 'bbox') or len(track.bbox) != 4:
|
| 371 |
continue
|
| 372 |
-
|
| 373 |
track_center = np.array(self._get_center(track.bbox))
|
| 374 |
track_size = np.array([
|
| 375 |
max(1, track.bbox[2] - track.bbox[0]),
|
|
@@ -379,66 +465,47 @@ class RobustTracker:
|
|
| 379 |
for d_idx, detection in enumerate(detections):
|
| 380 |
if not hasattr(detection, 'bbox') or len(detection.bbox) != 4:
|
| 381 |
continue
|
| 382 |
-
|
| 383 |
# IoU cost
|
| 384 |
iou = self._iou(track.bbox, detection.bbox)
|
| 385 |
|
| 386 |
-
# Center distance
|
| 387 |
det_center = np.array(self._get_center(detection.bbox))
|
| 388 |
distance = np.linalg.norm(track_center - det_center)
|
| 389 |
|
| 390 |
-
# Size similarity
|
| 391 |
det_size = np.array([
|
| 392 |
max(1, detection.bbox[2] - detection.bbox[0]),
|
| 393 |
max(1, detection.bbox[3] - detection.bbox[1])
|
| 394 |
])
|
| 395 |
|
| 396 |
-
# Prevent division by zero
|
| 397 |
size_ratio = np.minimum(track_size, det_size) / (np.maximum(track_size, det_size) + 1e-6)
|
| 398 |
size_cost = 1 - np.mean(size_ratio)
|
| 399 |
|
| 400 |
-
# Check basic constraints
|
| 401 |
if iou >= self.min_iou_for_match and distance < self.max_center_distance:
|
| 402 |
iou_cost = 1 - iou
|
| 403 |
dist_cost = distance / self.max_center_distance
|
| 404 |
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
0.15 * size_cost)
|
| 409 |
|
| 410 |
-
#
|
| 411 |
-
if
|
| 412 |
-
|
| 413 |
-
track.appearance_features and
|
| 414 |
-
hasattr(detection, 'features')):
|
| 415 |
-
try:
|
| 416 |
-
track_feat = np.mean(track.appearance_features, axis=0)
|
| 417 |
-
det_feat = detection.features
|
| 418 |
-
|
| 419 |
-
# Cosine similarity
|
| 420 |
-
feat_norm = np.linalg.norm(track_feat) * np.linalg.norm(det_feat)
|
| 421 |
-
if feat_norm > 0:
|
| 422 |
-
app_sim = np.dot(track_feat, det_feat) / feat_norm
|
| 423 |
-
app_cost = 1 - max(0, min(1, app_sim))
|
| 424 |
-
total_cost = (0.5 * iou_cost + 0.2 * dist_cost +
|
| 425 |
-
0.15 * size_cost + 0.15 * app_cost)
|
| 426 |
-
except:
|
| 427 |
-
pass # Use cost without appearance
|
| 428 |
|
| 429 |
cost_matrix[t_idx, d_idx] = total_cost
|
| 430 |
else:
|
| 431 |
cost_matrix[t_idx, d_idx] = 1.0
|
| 432 |
-
|
| 433 |
-
return cost_matrix
|
| 434 |
|
|
|
|
|
|
|
| 435 |
except Exception as e:
|
| 436 |
-
print(f"Cost matrix
|
| 437 |
-
# Return high cost matrix as fallback
|
| 438 |
return np.ones((len(tracks), len(detections)))
|
| 439 |
|
| 440 |
def _get_center(self, bbox: List[float]) -> Tuple[float, float]:
|
| 441 |
-
"""Get bbox center
|
| 442 |
try:
|
| 443 |
if len(bbox) >= 4:
|
| 444 |
return ((bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2)
|
|
@@ -447,11 +514,11 @@ class RobustTracker:
|
|
| 447 |
return (0, 0)
|
| 448 |
|
| 449 |
def _iou(self, bbox1: List[float], bbox2: List[float]) -> float:
|
| 450 |
-
"""Calculate IoU
|
| 451 |
try:
|
| 452 |
if len(bbox1) < 4 or len(bbox2) < 4:
|
| 453 |
return 0.0
|
| 454 |
-
|
| 455 |
x1 = max(bbox1[0], bbox2[0])
|
| 456 |
y1 = max(bbox1[1], bbox2[1])
|
| 457 |
x2 = min(bbox1[2], bbox2[2])
|
|
@@ -459,42 +526,42 @@ class RobustTracker:
|
|
| 459 |
|
| 460 |
if x2 < x1 or y2 < y1:
|
| 461 |
return 0.0
|
| 462 |
-
|
| 463 |
-
intersection = (x2 - x1) * (y2 - y1)
|
| 464 |
|
|
|
|
| 465 |
area1 = max(1, (bbox1[2] - bbox1[0]) * (bbox1[3] - bbox1[1]))
|
| 466 |
area2 = max(1, (bbox2[2] - bbox2[0]) * (bbox2[3] - bbox2[1]))
|
| 467 |
union = area1 + area2 - intersection
|
| 468 |
|
| 469 |
return max(0, min(1, intersection / (union + 1e-6)))
|
| 470 |
-
|
| 471 |
except Exception as e:
|
| 472 |
-
print(f"IoU calculation error: {e}")
|
| 473 |
return 0.0
|
| 474 |
|
| 475 |
def set_match_threshold(self, threshold: float):
|
| 476 |
"""Update matching threshold"""
|
| 477 |
self.match_threshold = max(0.1, min(0.8, threshold))
|
| 478 |
-
print(f"Tracking threshold
|
| 479 |
|
| 480 |
def reset(self):
|
| 481 |
-
"""Reset tracker
|
| 482 |
self.tracks.clear()
|
| 483 |
self.track_id_count = 1
|
| 484 |
print("Tracker reset")
|
| 485 |
|
| 486 |
def get_statistics(self) -> Dict:
|
| 487 |
-
"""Get
|
| 488 |
confirmed = len([t for t in self.tracks if t.state == 'confirmed'])
|
|
|
|
| 489 |
tentative = len([t for t in self.tracks if t.state == 'tentative'])
|
| 490 |
|
| 491 |
return {
|
| 492 |
'total_tracks': len(self.tracks),
|
| 493 |
'confirmed_tracks': confirmed,
|
|
|
|
| 494 |
'tentative_tracks': tentative,
|
| 495 |
'next_id': self.track_id_count
|
| 496 |
}
|
| 497 |
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
|
|
|
| 1 |
"""
|
| 2 |
+
Enhanced Tracking with Track Validation and Improved Accuracy (Enhancement 7)
|
|
|
|
| 3 |
"""
|
| 4 |
import numpy as np
|
| 5 |
from typing import List, Optional, Tuple, Dict
|
|
|
|
| 10 |
import warnings
|
| 11 |
warnings.filterwarnings('ignore')
|
| 12 |
|
|
|
|
| 13 |
class Track:
|
| 14 |
+
"""Enhanced track with validation and quality metrics"""
|
|
|
|
| 15 |
def __init__(self, detection: Detection, track_id: Optional[int] = None):
|
|
|
|
| 16 |
self.track_id = track_id if track_id else self._generate_id()
|
| 17 |
self.bbox = detection.bbox.copy() if hasattr(detection, 'bbox') else [0, 0, 100, 100]
|
| 18 |
self.detections = [detection]
|
|
|
|
| 25 |
self.hits = 1
|
| 26 |
self.consecutive_misses = 0
|
| 27 |
|
| 28 |
+
# ENHANCEMENT 7: Track validation
|
| 29 |
+
self.validation_score = 0 # Increases with consistent detections
|
| 30 |
+
self.min_validation_hits = 3 # Require 3 consistent detections
|
| 31 |
+
self.is_validated = False
|
| 32 |
+
|
| 33 |
# Store center points for trajectory
|
| 34 |
cx = (self.bbox[0] + self.bbox[2]) / 2
|
| 35 |
cy = (self.bbox[1] + self.bbox[3]) / 2
|
|
|
|
| 40 |
self.velocity = np.array([0.0, 0.0])
|
| 41 |
self.acceleration = np.array([0.0, 0.0])
|
| 42 |
|
| 43 |
+
# Appearance features
|
| 44 |
self.appearance_features = []
|
| 45 |
if hasattr(detection, 'features'):
|
| 46 |
self.appearance_features.append(detection.features)
|
| 47 |
+
|
| 48 |
+
# Size tracking with validation
|
| 49 |
self.sizes = deque(maxlen=10)
|
| 50 |
width = max(1, self.bbox[2] - self.bbox[0])
|
| 51 |
height = max(1, self.bbox[3] - self.bbox[1])
|
| 52 |
self.sizes.append((width, height))
|
| 53 |
+
self.initial_size = (width, height)
|
| 54 |
|
| 55 |
# Track quality metrics
|
| 56 |
self.avg_confidence = self.confidence
|
| 57 |
self.max_confidence = self.confidence
|
| 58 |
+
self.confidence_history = deque(maxlen=10)
|
| 59 |
+
self.confidence_history.append(self.confidence)
|
| 60 |
+
|
| 61 |
def _generate_id(self) -> int:
|
|
|
|
| 62 |
return int(uuid.uuid4().int % 100000)
|
| 63 |
+
|
| 64 |
+
def validate_detection_consistency(self, detection: Detection) -> bool:
|
| 65 |
+
"""
|
| 66 |
+
ENHANCEMENT 7: Validate detection consistency before accepting
|
| 67 |
+
Checks size similarity and position consistency
|
| 68 |
+
"""
|
| 69 |
+
if not hasattr(detection, 'bbox') or len(detection.bbox) != 4:
|
| 70 |
+
return False
|
| 71 |
+
|
| 72 |
+
# Check size similarity
|
| 73 |
+
new_width = detection.bbox[2] - detection.bbox[0]
|
| 74 |
+
new_height = detection.bbox[3] - detection.bbox[1]
|
| 75 |
+
|
| 76 |
+
if self.initial_size[0] > 0 and self.initial_size[1] > 0:
|
| 77 |
+
width_ratio = new_width / self.initial_size[0]
|
| 78 |
+
height_ratio = new_height / self.initial_size[1]
|
| 79 |
+
|
| 80 |
+
# Allow 50% size variation max (prevents wild mismatches)
|
| 81 |
+
if width_ratio < 0.5 or width_ratio > 2.0:
|
| 82 |
+
return False
|
| 83 |
+
if height_ratio < 0.5 or height_ratio > 2.0:
|
| 84 |
+
return False
|
| 85 |
+
|
| 86 |
+
# Check position consistency (not jumping too far)
|
| 87 |
+
new_cx = (detection.bbox[0] + detection.bbox[2]) / 2
|
| 88 |
+
new_cy = (detection.bbox[1] + detection.bbox[3]) / 2
|
| 89 |
+
|
| 90 |
+
if len(self.trajectory) > 0:
|
| 91 |
+
last_cx, last_cy = self.trajectory[-1]
|
| 92 |
+
distance = np.sqrt((new_cx - last_cx)**2 + (new_cy - last_cy)**2)
|
| 93 |
+
|
| 94 |
+
# Max reasonable movement per frame (adjust based on your video)
|
| 95 |
+
max_movement = 100 # pixels
|
| 96 |
+
if distance > max_movement:
|
| 97 |
+
return False
|
| 98 |
|
| 99 |
+
return True
|
| 100 |
+
|
| 101 |
def predict(self):
|
| 102 |
+
"""Enhanced motion prediction"""
|
| 103 |
self.age += 1
|
| 104 |
self.time_since_update += 1
|
| 105 |
self.consecutive_misses += 1
|
| 106 |
|
| 107 |
try:
|
| 108 |
if len(self.trajectory) >= 3:
|
|
|
|
| 109 |
positions = np.array(list(self.trajectory))[-3:]
|
|
|
|
|
|
|
| 110 |
self.velocity = positions[-1] - positions[-2]
|
| 111 |
|
| 112 |
+
# Limit velocity
|
| 113 |
+
max_velocity = 50
|
| 114 |
velocity_magnitude = np.linalg.norm(self.velocity)
|
| 115 |
if velocity_magnitude > max_velocity:
|
| 116 |
self.velocity = self.velocity / velocity_magnitude * max_velocity
|
| 117 |
|
|
|
|
| 118 |
if len(positions) == 3:
|
| 119 |
prev_velocity = positions[-2] - positions[-3]
|
| 120 |
self.acceleration = (self.velocity - prev_velocity) * 0.3
|
| 121 |
|
|
|
|
| 122 |
predicted_pos = positions[-1] + self.velocity * 0.7 + self.acceleration * 0.1
|
| 123 |
|
|
|
|
| 124 |
if self.sizes:
|
| 125 |
avg_width = np.mean([s[0] for s in self.sizes])
|
| 126 |
avg_height = np.mean([s[1] for s in self.sizes])
|
|
|
|
| 128 |
avg_width = max(10, self.bbox[2] - self.bbox[0])
|
| 129 |
avg_height = max(10, self.bbox[3] - self.bbox[1])
|
| 130 |
|
|
|
|
| 131 |
self.bbox = [
|
| 132 |
predicted_pos[0] - avg_width/2,
|
| 133 |
predicted_pos[1] - avg_height/2,
|
|
|
|
| 135 |
predicted_pos[1] + avg_height/2
|
| 136 |
]
|
| 137 |
except Exception as e:
|
|
|
|
|
|
|
| 138 |
pass
|
| 139 |
+
|
| 140 |
def update(self, detection: Detection):
|
| 141 |
+
"""Update track with validation"""
|
| 142 |
try:
|
| 143 |
+
# ENHANCEMENT 7: Validate consistency
|
| 144 |
+
if not self.validate_detection_consistency(detection):
|
| 145 |
+
print(f" ⚠️ Track {self.track_id}: Rejected inconsistent detection")
|
| 146 |
+
return
|
| 147 |
+
|
| 148 |
# Update bbox
|
| 149 |
if hasattr(detection, 'bbox'):
|
| 150 |
self.bbox = detection.bbox.copy()
|
| 151 |
+
self.detections.append(detection)
|
|
|
|
| 152 |
|
| 153 |
# Update confidence
|
| 154 |
if hasattr(detection, 'confidence'):
|
| 155 |
self.confidence = detection.confidence
|
| 156 |
+
self.confidence_history.append(self.confidence)
|
| 157 |
+
self.avg_confidence = np.mean(list(self.confidence_history))
|
| 158 |
self.max_confidence = max(self.max_confidence, self.confidence)
|
| 159 |
|
| 160 |
self.hits += 1
|
| 161 |
self.time_since_update = 0
|
| 162 |
self.consecutive_misses = 0
|
| 163 |
|
| 164 |
+
# ENHANCEMENT 7: Update validation score
|
| 165 |
+
self.validation_score += 1
|
| 166 |
+
if self.validation_score >= self.min_validation_hits and not self.is_validated:
|
| 167 |
+
self.is_validated = True
|
| 168 |
+
print(f" ✅ Track {self.track_id} validated after {self.validation_score} consistent hits")
|
| 169 |
+
|
| 170 |
# Update trajectory
|
| 171 |
cx = (self.bbox[0] + self.bbox[2]) / 2
|
| 172 |
cy = (self.bbox[1] + self.bbox[3]) / 2
|
|
|
|
| 177 |
height = max(1, self.bbox[3] - self.bbox[1])
|
| 178 |
self.sizes.append((width, height))
|
| 179 |
|
| 180 |
+
# Store appearance features
|
| 181 |
if hasattr(detection, 'features'):
|
| 182 |
self.appearance_features.append(detection.features)
|
| 183 |
if len(self.appearance_features) > 5:
|
| 184 |
self.appearance_features = self.appearance_features[-5:]
|
| 185 |
|
| 186 |
+
# Confirm track after validation
|
| 187 |
+
if self.is_validated and self.state == 'tentative':
|
| 188 |
self.state = 'confirmed'
|
| 189 |
+
|
| 190 |
+
# Keep only recent detections
|
| 191 |
if len(self.detections) > 5:
|
|
|
|
| 192 |
for old_det in self.detections[:-5]:
|
| 193 |
if hasattr(old_det, 'image_crop'):
|
| 194 |
old_det.image_crop = None
|
| 195 |
self.detections = self.detections[-5:]
|
| 196 |
+
|
| 197 |
except Exception as e:
|
| 198 |
print(f"Track update error: {e}")
|
| 199 |
+
|
| 200 |
def mark_missed(self):
|
| 201 |
+
"""Mark track as missed"""
|
| 202 |
+
# ENHANCEMENT 7: Only delete validated tracks after longer period
|
| 203 |
+
if self.is_validated and self.state == 'confirmed':
|
| 204 |
+
if self.consecutive_misses > 20: # Extended buffer for validated tracks
|
| 205 |
self.state = 'deleted'
|
| 206 |
+
elif self.time_since_update > 40:
|
| 207 |
self.state = 'deleted'
|
| 208 |
elif self.state == 'tentative':
|
| 209 |
if self.consecutive_misses > 3:
|
| 210 |
self.state = 'deleted'
|
| 211 |
+
|
| 212 |
+
# Reduce validation score when missed
|
| 213 |
+
self.validation_score = max(0, self.validation_score - 0.5)
|
| 214 |
|
| 215 |
|
| 216 |
+
class EnhancedTracker:
|
| 217 |
"""
|
| 218 |
+
Enhanced Tracker with Track Validation (Enhancement 7)
|
| 219 |
"""
|
|
|
|
| 220 |
def __init__(self,
|
| 221 |
match_threshold: float = 0.35,
|
| 222 |
+
track_buffer: int = 40, # Increased from 30
|
| 223 |
min_iou_for_match: float = 0.15,
|
| 224 |
use_appearance: bool = False):
|
|
|
|
|
|
|
| 225 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
self.match_threshold = match_threshold
|
| 227 |
self.track_buffer = track_buffer
|
| 228 |
self.min_iou_for_match = min_iou_for_match
|
|
|
|
| 231 |
self.tracks: List[Track] = []
|
| 232 |
self.track_id_count = 1
|
| 233 |
|
| 234 |
+
# ENHANCEMENT 7: Size constraints for valid dogs
|
| 235 |
+
self.min_dog_size = 30 # Minimum width/height in pixels
|
| 236 |
+
self.max_dog_size = 800 # Maximum width/height in pixels
|
| 237 |
+
|
| 238 |
# Enhanced parameters
|
| 239 |
+
self.max_center_distance = 120
|
| 240 |
+
self.min_size_similarity = 0.4
|
| 241 |
|
|
|
|
| 242 |
self.debug = False
|
| 243 |
+
|
| 244 |
+
def _is_valid_detection_size(self, detection: Detection) -> bool:
|
| 245 |
+
"""ENHANCEMENT 7: Size-based filtering"""
|
| 246 |
+
if not hasattr(detection, 'bbox') or len(detection.bbox) != 4:
|
| 247 |
+
return False
|
| 248 |
|
| 249 |
+
width = detection.bbox[2] - detection.bbox[0]
|
| 250 |
+
height = detection.bbox[3] - detection.bbox[1]
|
| 251 |
+
|
| 252 |
+
# Filter too small or too large
|
| 253 |
+
if width < self.min_dog_size or height < self.min_dog_size:
|
| 254 |
+
return False
|
| 255 |
+
if width > self.max_dog_size or height > self.max_dog_size:
|
| 256 |
+
return False
|
| 257 |
+
|
| 258 |
+
# Aspect ratio check (dogs shouldn't be super wide or super tall)
|
| 259 |
+
if width > 0 and height > 0:
|
| 260 |
+
aspect_ratio = width / height
|
| 261 |
+
if aspect_ratio < 0.3 or aspect_ratio > 3.0:
|
| 262 |
+
return False
|
| 263 |
+
|
| 264 |
+
return True
|
| 265 |
+
|
| 266 |
+
def _check_appearance_similarity(self, detection: Detection) -> bool:
|
| 267 |
"""
|
| 268 |
+
ENHANCEMENT 7: Check if detection is too similar to existing tracks
|
| 269 |
+
Prevents duplicate tracks for the same dog
|
| 270 |
"""
|
| 271 |
+
if not hasattr(detection, 'bbox'):
|
| 272 |
+
return True
|
| 273 |
+
|
| 274 |
+
det_center = self._get_center(detection.bbox)
|
| 275 |
+
det_size = (detection.bbox[2] - detection.bbox[0],
|
| 276 |
+
detection.bbox[3] - detection.bbox[1])
|
| 277 |
+
|
| 278 |
+
for track in self.tracks:
|
| 279 |
+
if track.state == 'deleted':
|
| 280 |
+
continue
|
| 281 |
+
|
| 282 |
+
track_center = self._get_center(track.bbox)
|
| 283 |
+
track_size = (track.bbox[2] - track.bbox[0],
|
| 284 |
+
track.bbox[3] - track.bbox[1])
|
| 285 |
+
|
| 286 |
+
# Check center distance
|
| 287 |
+
distance = np.linalg.norm(np.array(det_center) - np.array(track_center))
|
| 288 |
+
|
| 289 |
+
# Check size similarity
|
| 290 |
+
size_diff = abs(det_size[0] - track_size[0]) + abs(det_size[1] - track_size[1])
|
| 291 |
+
avg_size = (det_size[0] + det_size[1] + track_size[0] + track_size[1]) / 4
|
| 292 |
+
|
| 293 |
+
# If very close and similar size, it's likely the same dog
|
| 294 |
+
if distance < 40 and size_diff < avg_size * 0.3:
|
| 295 |
+
return False # Too similar to existing track
|
| 296 |
+
|
| 297 |
+
return True
|
| 298 |
+
|
| 299 |
+
def update(self, detections: List[Detection]) -> List[Track]:
|
| 300 |
+
"""Update tracks with enhanced validation"""
|
| 301 |
+
|
| 302 |
+
# ENHANCEMENT 7: Filter detections by size
|
| 303 |
+
valid_detections = [d for d in detections if self._is_valid_detection_size(d)]
|
| 304 |
+
|
| 305 |
+
if len(valid_detections) < len(detections):
|
| 306 |
+
print(f" 🔍 Filtered {len(detections) - len(valid_detections)} invalid size detections")
|
| 307 |
+
|
| 308 |
+
detections = valid_detections
|
| 309 |
+
|
| 310 |
if not detections:
|
|
|
|
| 311 |
for track in self.tracks:
|
| 312 |
track.predict()
|
| 313 |
track.mark_missed()
|
| 314 |
|
| 315 |
+
# Move lost tracks to sleeping (call ReID's move_to_sleeping)
|
| 316 |
+
self._handle_lost_tracks()
|
| 317 |
+
|
| 318 |
self.tracks = [t for t in self.tracks if t.state != 'deleted']
|
| 319 |
return [t for t in self.tracks if t.state == 'confirmed']
|
| 320 |
|
|
|
|
| 322 |
# Predict existing tracks
|
| 323 |
for track in self.tracks:
|
| 324 |
track.predict()
|
| 325 |
+
|
| 326 |
# Split tracks by state
|
| 327 |
confirmed_tracks = [t for t in self.tracks if t.state == 'confirmed']
|
| 328 |
tentative_tracks = [t for t in self.tracks if t.state == 'tentative']
|
| 329 |
|
|
|
|
| 330 |
matched_track_indices = set()
|
| 331 |
matched_det_indices = set()
|
| 332 |
|
| 333 |
+
# Stage 1: Match confirmed tracks
|
| 334 |
if confirmed_tracks and detections:
|
| 335 |
matched_track_indices, matched_det_indices = self._associate_tracks(
|
| 336 |
+
confirmed_tracks, detections,
|
| 337 |
matched_track_indices, matched_det_indices,
|
| 338 |
threshold_mult=1.0
|
| 339 |
)
|
| 340 |
|
| 341 |
+
# Stage 2: Match tentative tracks
|
| 342 |
if tentative_tracks:
|
| 343 |
+
unmatched_dets = [detections[i] for i in range(len(detections))
|
| 344 |
if i not in matched_det_indices]
|
| 345 |
|
| 346 |
if unmatched_dets:
|
| 347 |
+
temp_det_mapping = [i for i in range(len(detections))
|
|
|
|
| 348 |
if i not in matched_det_indices]
|
| 349 |
|
| 350 |
tent_matched_tracks, tent_matched_dets = self._associate_tracks(
|
|
|
|
| 353 |
threshold_mult=0.7
|
| 354 |
)
|
| 355 |
|
|
|
|
| 356 |
for det_idx in tent_matched_dets:
|
| 357 |
matched_det_indices.add(temp_det_mapping[det_idx])
|
| 358 |
|
| 359 |
+
# Mark unmatched tracks
|
| 360 |
for i, track in enumerate(confirmed_tracks):
|
| 361 |
if i not in matched_track_indices:
|
| 362 |
track.mark_missed()
|
| 363 |
+
|
| 364 |
for track in tentative_tracks:
|
| 365 |
if track.time_since_update > 0:
|
| 366 |
track.mark_missed()
|
| 367 |
|
| 368 |
+
# ENHANCEMENT 7: Create new tracks with validation
|
| 369 |
for det_idx in range(len(detections)):
|
| 370 |
if det_idx not in matched_det_indices:
|
| 371 |
detection = detections[det_idx]
|
| 372 |
|
| 373 |
+
# Check appearance similarity before creating track
|
| 374 |
+
if self._check_appearance_similarity(detection):
|
| 375 |
new_track = Track(detection, self.track_id_count)
|
| 376 |
self.track_id_count += 1
|
| 377 |
self.tracks.append(new_track)
|
| 378 |
+
else:
|
| 379 |
+
print(f" 🚫 Rejected duplicate track candidate")
|
| 380 |
+
|
| 381 |
+
# Handle lost tracks
|
| 382 |
+
self._handle_lost_tracks()
|
| 383 |
|
| 384 |
# Remove deleted tracks
|
| 385 |
self.tracks = [t for t in self.tracks if t.state != 'deleted']
|
| 386 |
|
| 387 |
+
# Return only validated confirmed tracks
|
| 388 |
+
return [t for t in self.tracks if t.state == 'confirmed' and t.is_validated]
|
| 389 |
+
|
| 390 |
except Exception as e:
|
| 391 |
print(f"Tracker update error: {e}")
|
|
|
|
| 392 |
return [t for t in self.tracks if t.state == 'confirmed']
|
| 393 |
|
| 394 |
+
def _handle_lost_tracks(self):
|
| 395 |
+
"""Handle tracks that are about to be deleted"""
|
| 396 |
+
for track in self.tracks:
|
| 397 |
+
# If track is validated and about to be deleted, could move to sleeping
|
| 398 |
+
if (track.is_validated and
|
| 399 |
+
track.state == 'confirmed' and
|
| 400 |
+
track.consecutive_misses == 18): # Just before deletion at 20
|
| 401 |
+
|
| 402 |
+
# This would be called by demo to move to ReID sleeping tracks
|
| 403 |
+
if hasattr(self, '_reid_callback'):
|
| 404 |
+
self._reid_callback(track.track_id)
|
| 405 |
+
|
| 406 |
+
def set_reid_callback(self, callback):
|
| 407 |
+
"""Set callback to ReID for moving tracks to sleeping"""
|
| 408 |
+
self._reid_callback = callback
|
| 409 |
+
|
| 410 |
def _associate_tracks(self, tracks: List[Track], detections: List[Detection],
|
| 411 |
existing_matched_tracks: set, existing_matched_dets: set,
|
| 412 |
threshold_mult: float = 1.0) -> Tuple[set, set]:
|
| 413 |
+
"""Track-detection association"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 414 |
if not tracks or not detections:
|
| 415 |
return existing_matched_tracks, existing_matched_dets
|
| 416 |
+
|
| 417 |
try:
|
|
|
|
| 418 |
cost_matrix = self._calculate_enhanced_cost_matrix(tracks, detections)
|
| 419 |
|
| 420 |
if cost_matrix.size == 0:
|
| 421 |
return existing_matched_tracks, existing_matched_dets
|
| 422 |
|
|
|
|
| 423 |
row_ind, col_ind = linear_sum_assignment(cost_matrix)
|
| 424 |
|
| 425 |
matched_tracks = existing_matched_tracks.copy()
|
| 426 |
matched_dets = existing_matched_dets.copy()
|
| 427 |
|
|
|
|
| 428 |
for r, c in zip(row_ind, col_ind):
|
|
|
|
| 429 |
if r >= len(tracks) or c >= len(detections):
|
| 430 |
continue
|
| 431 |
+
|
|
|
|
| 432 |
threshold = (1 - self.match_threshold * threshold_mult)
|
| 433 |
if cost_matrix[r, c] < threshold:
|
| 434 |
tracks[r].update(detections[c])
|
| 435 |
matched_tracks.add(r)
|
| 436 |
matched_dets.add(c)
|
|
|
|
|
|
|
| 437 |
|
| 438 |
+
return matched_tracks, matched_dets
|
| 439 |
+
|
| 440 |
except Exception as e:
|
| 441 |
print(f"Association error: {e}")
|
| 442 |
return existing_matched_tracks, existing_matched_dets
|
| 443 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 444 |
def _calculate_enhanced_cost_matrix(self, tracks: List[Track],
|
| 445 |
detections: List[Detection]) -> np.ndarray:
|
| 446 |
+
"""Calculate cost matrix"""
|
| 447 |
try:
|
| 448 |
if not tracks or not detections:
|
| 449 |
return np.array([])
|
| 450 |
+
|
| 451 |
n_tracks = len(tracks)
|
| 452 |
n_dets = len(detections)
|
| 453 |
cost_matrix = np.ones((n_tracks, n_dets))
|
|
|
|
| 455 |
for t_idx, track in enumerate(tracks):
|
| 456 |
if not hasattr(track, 'bbox') or len(track.bbox) != 4:
|
| 457 |
continue
|
| 458 |
+
|
| 459 |
track_center = np.array(self._get_center(track.bbox))
|
| 460 |
track_size = np.array([
|
| 461 |
max(1, track.bbox[2] - track.bbox[0]),
|
|
|
|
| 465 |
for d_idx, detection in enumerate(detections):
|
| 466 |
if not hasattr(detection, 'bbox') or len(detection.bbox) != 4:
|
| 467 |
continue
|
| 468 |
+
|
| 469 |
# IoU cost
|
| 470 |
iou = self._iou(track.bbox, detection.bbox)
|
| 471 |
|
| 472 |
+
# Center distance
|
| 473 |
det_center = np.array(self._get_center(detection.bbox))
|
| 474 |
distance = np.linalg.norm(track_center - det_center)
|
| 475 |
|
| 476 |
+
# Size similarity
|
| 477 |
det_size = np.array([
|
| 478 |
max(1, detection.bbox[2] - detection.bbox[0]),
|
| 479 |
max(1, detection.bbox[3] - detection.bbox[1])
|
| 480 |
])
|
| 481 |
|
|
|
|
| 482 |
size_ratio = np.minimum(track_size, det_size) / (np.maximum(track_size, det_size) + 1e-6)
|
| 483 |
size_cost = 1 - np.mean(size_ratio)
|
| 484 |
|
|
|
|
| 485 |
if iou >= self.min_iou_for_match and distance < self.max_center_distance:
|
| 486 |
iou_cost = 1 - iou
|
| 487 |
dist_cost = distance / self.max_center_distance
|
| 488 |
|
| 489 |
+
total_cost = (0.6 * iou_cost +
|
| 490 |
+
0.25 * dist_cost +
|
| 491 |
+
0.15 * size_cost)
|
|
|
|
| 492 |
|
| 493 |
+
# Boost validated tracks
|
| 494 |
+
if track.is_validated:
|
| 495 |
+
total_cost *= 0.9
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 496 |
|
| 497 |
cost_matrix[t_idx, d_idx] = total_cost
|
| 498 |
else:
|
| 499 |
cost_matrix[t_idx, d_idx] = 1.0
|
|
|
|
|
|
|
| 500 |
|
| 501 |
+
return cost_matrix
|
| 502 |
+
|
| 503 |
except Exception as e:
|
| 504 |
+
print(f"Cost matrix error: {e}")
|
|
|
|
| 505 |
return np.ones((len(tracks), len(detections)))
|
| 506 |
|
| 507 |
def _get_center(self, bbox: List[float]) -> Tuple[float, float]:
|
| 508 |
+
"""Get bbox center"""
|
| 509 |
try:
|
| 510 |
if len(bbox) >= 4:
|
| 511 |
return ((bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2)
|
|
|
|
| 514 |
return (0, 0)
|
| 515 |
|
| 516 |
def _iou(self, bbox1: List[float], bbox2: List[float]) -> float:
|
| 517 |
+
"""Calculate IoU"""
|
| 518 |
try:
|
| 519 |
if len(bbox1) < 4 or len(bbox2) < 4:
|
| 520 |
return 0.0
|
| 521 |
+
|
| 522 |
x1 = max(bbox1[0], bbox2[0])
|
| 523 |
y1 = max(bbox1[1], bbox2[1])
|
| 524 |
x2 = min(bbox1[2], bbox2[2])
|
|
|
|
| 526 |
|
| 527 |
if x2 < x1 or y2 < y1:
|
| 528 |
return 0.0
|
|
|
|
|
|
|
| 529 |
|
| 530 |
+
intersection = (x2 - x1) * (y2 - y1)
|
| 531 |
area1 = max(1, (bbox1[2] - bbox1[0]) * (bbox1[3] - bbox1[1]))
|
| 532 |
area2 = max(1, (bbox2[2] - bbox2[0]) * (bbox2[3] - bbox2[1]))
|
| 533 |
union = area1 + area2 - intersection
|
| 534 |
|
| 535 |
return max(0, min(1, intersection / (union + 1e-6)))
|
| 536 |
+
|
| 537 |
except Exception as e:
|
|
|
|
| 538 |
return 0.0
|
| 539 |
|
| 540 |
def set_match_threshold(self, threshold: float):
|
| 541 |
"""Update matching threshold"""
|
| 542 |
self.match_threshold = max(0.1, min(0.8, threshold))
|
| 543 |
+
print(f"Tracking threshold: {self.match_threshold:.2f}")
|
| 544 |
|
| 545 |
def reset(self):
|
| 546 |
+
"""Reset tracker"""
|
| 547 |
self.tracks.clear()
|
| 548 |
self.track_id_count = 1
|
| 549 |
print("Tracker reset")
|
| 550 |
|
| 551 |
def get_statistics(self) -> Dict:
|
| 552 |
+
"""Get statistics"""
|
| 553 |
confirmed = len([t for t in self.tracks if t.state == 'confirmed'])
|
| 554 |
+
validated = len([t for t in self.tracks if t.is_validated])
|
| 555 |
tentative = len([t for t in self.tracks if t.state == 'tentative'])
|
| 556 |
|
| 557 |
return {
|
| 558 |
'total_tracks': len(self.tracks),
|
| 559 |
'confirmed_tracks': confirmed,
|
| 560 |
+
'validated_tracks': validated,
|
| 561 |
'tentative_tracks': tentative,
|
| 562 |
'next_id': self.track_id_count
|
| 563 |
}
|
| 564 |
|
| 565 |
+
# Compatibility aliases
|
| 566 |
+
SimpleTracker = EnhancedTracker
|
| 567 |
+
RobustTracker = EnhancedTracker
|