Spaces:
Sleeping
Sleeping
Update reid.py
Browse files
reid.py
CHANGED
|
@@ -1,285 +1,705 @@
|
|
| 1 |
"""
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
- Dog pose model (YOLOv8 trained on pose)
|
| 5 |
-
- Ensemble CNN features (ResNet50, EfficientNet, ViT)
|
| 6 |
-
- Color histograms
|
| 7 |
-
- Temporal coherence
|
| 8 |
"""
|
| 9 |
-
|
| 10 |
-
import time
|
| 11 |
-
import numpy as np
|
| 12 |
import cv2
|
| 13 |
-
import
|
| 14 |
-
import
|
| 15 |
-
|
| 16 |
-
import
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
from
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
self.
|
| 38 |
-
self.
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
self.
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
else:
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
]
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
try:
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
except Exception as e:
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
def __init__(self,
|
| 121 |
-
pose_model_path="dog-pose-trained.pt",
|
| 122 |
-
similarity_threshold=0.7,
|
| 123 |
-
device="cuda",
|
| 124 |
-
W_pose=0.3, W_cnn=0.4, W_color=0.2, W_temp=0.1):
|
| 125 |
-
|
| 126 |
-
self.device = device if torch.cuda.is_available() else "cpu"
|
| 127 |
-
self.similarity_threshold = similarity_threshold
|
| 128 |
-
|
| 129 |
-
# weights
|
| 130 |
-
self.W_pose = W_pose
|
| 131 |
-
self.W_cnn = W_cnn
|
| 132 |
-
self.W_color = W_color
|
| 133 |
-
self.W_temp = W_temp
|
| 134 |
-
|
| 135 |
-
# feature extractors
|
| 136 |
-
self.pose_extractor = PoseFeatureExtractor(pose_model_path)
|
| 137 |
-
self.ensemble_extractor = EnsembleFeatureExtractor(device=self.device)
|
| 138 |
-
|
| 139 |
-
# original storage
|
| 140 |
-
self.pose_db: Dict[int, List[np.ndarray]] = {}
|
| 141 |
-
self.cnn_db: Dict[int, List[np.ndarray]] = {}
|
| 142 |
-
self.color_db: Dict[int, List[np.ndarray]] = {}
|
| 143 |
-
self.last_seen: Dict[int, Tuple[float, float, float]] = {}
|
| 144 |
-
self.track_to_dog: Dict[int, int] = {}
|
| 145 |
-
self.next_id = 1
|
| 146 |
-
|
| 147 |
-
# โ
compatibility attributes for app.py
|
| 148 |
-
self.dog_database: Dict[int, Dict[str, list]] = {}
|
| 149 |
-
self.dog_images: Dict[int, list] = {}
|
| 150 |
-
self.next_dog_id: int = 0
|
| 151 |
-
|
| 152 |
-
# --------- Color Histograms ---------
|
| 153 |
-
def extract_color_histogram(self, image: np.ndarray) -> Optional[np.ndarray]:
|
| 154 |
-
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
|
| 155 |
-
hist = cv2.calcHist([hsv], [0, 1, 2], None,
|
| 156 |
-
[60, 64, 64], [0, 180, 0, 256, 0, 256])
|
| 157 |
-
hist = cv2.normalize(hist, hist).flatten()
|
| 158 |
-
return hist
|
| 159 |
-
|
| 160 |
-
def compare_color(self, h1, h2) -> float:
|
| 161 |
-
return cv2.compareHist(h1.astype("float32"),
|
| 162 |
-
h2.astype("float32"),
|
| 163 |
-
cv2.HISTCMP_CORREL)
|
| 164 |
-
|
| 165 |
-
# --------- Temporal Coherence ---------
|
| 166 |
-
def temporal_score(self, track: Track, dog_id: int) -> float:
|
| 167 |
-
if dog_id not in self.last_seen:
|
| 168 |
-
return 1.0
|
| 169 |
-
last_x, last_y, last_t = self.last_seen[dog_id]
|
| 170 |
-
bbox = track.bbox
|
| 171 |
-
cx = (bbox[0] + bbox[2]) / 2
|
| 172 |
-
cy = (bbox[1] + bbox[3]) / 2
|
| 173 |
-
dt = time.time() - last_t
|
| 174 |
-
dist = np.hypot(cx - last_x, cy - last_y)
|
| 175 |
-
max_dist = 500 * dt
|
| 176 |
-
return 1.0 if dist <= max_dist else 0.5
|
| 177 |
-
|
| 178 |
-
# --------- Match or Register ---------
|
| 179 |
-
def match_or_register(self, track: Track) -> Tuple[int, float]:
|
| 180 |
-
det = None
|
| 181 |
-
for d in reversed(track.detections):
|
| 182 |
-
if d.image_crop is not None:
|
| 183 |
-
det = d
|
| 184 |
-
break
|
| 185 |
-
if det is None:
|
| 186 |
-
return 0, 0.0
|
| 187 |
-
|
| 188 |
-
# extract features
|
| 189 |
-
pose_feat = self.pose_extractor(det.image_crop)
|
| 190 |
-
cnn_feat = self.ensemble_extractor.extract(det.image_crop)
|
| 191 |
-
color_hist = self.extract_color_histogram(det.image_crop)
|
| 192 |
-
|
| 193 |
-
if pose_feat is None and cnn_feat is None:
|
| 194 |
-
return 0, 0.0
|
| 195 |
-
|
| 196 |
-
# match loop
|
| 197 |
-
best_id, best_score = None, -1
|
| 198 |
-
for dog_id in set(self.pose_db.keys()) | set(self.cnn_db.keys()):
|
| 199 |
-
# pose sim
|
| 200 |
-
S_pose = 0
|
| 201 |
-
if pose_feat is not None and dog_id in self.pose_db:
|
| 202 |
-
S_pose = cosine_similarity(pose_feat.reshape(1, -1),
|
| 203 |
-
np.mean(self.pose_db[dog_id], axis=0).reshape(1, -1))[0, 0]
|
| 204 |
-
|
| 205 |
-
# cnn sim
|
| 206 |
-
S_cnn = 0
|
| 207 |
-
if cnn_feat is not None and dog_id in self.cnn_db:
|
| 208 |
-
S_cnn = cosine_similarity(cnn_feat.reshape(1, -1),
|
| 209 |
-
np.mean(self.cnn_db[dog_id], axis=0).reshape(1, -1))[0, 0]
|
| 210 |
-
|
| 211 |
-
# color sim
|
| 212 |
-
S_color = 0
|
| 213 |
-
if color_hist is not None and dog_id in self.color_db:
|
| 214 |
-
S_color = np.mean([self.compare_color(color_hist, h) for h in self.color_db[dog_id]])
|
| 215 |
-
|
| 216 |
-
# temporal sim
|
| 217 |
-
S_temp = self.temporal_score(track, dog_id)
|
| 218 |
-
|
| 219 |
-
# weighted score
|
| 220 |
-
score = (self.W_pose * S_pose +
|
| 221 |
-
self.W_cnn * S_cnn +
|
| 222 |
-
self.W_color * S_color +
|
| 223 |
-
self.W_temp * S_temp)
|
| 224 |
-
|
| 225 |
-
if score > best_score:
|
| 226 |
-
best_id, best_score = dog_id, score
|
| 227 |
-
|
| 228 |
-
# decide
|
| 229 |
-
if best_id is not None and best_score >= self.similarity_threshold:
|
| 230 |
-
if pose_feat is not None:
|
| 231 |
-
self.pose_db[best_id].append(pose_feat)
|
| 232 |
-
if cnn_feat is not None:
|
| 233 |
-
self.cnn_db[best_id].append(cnn_feat)
|
| 234 |
-
if color_hist is not None:
|
| 235 |
-
self.color_db.setdefault(best_id, []).append(color_hist)
|
| 236 |
-
bbox = track.bbox
|
| 237 |
-
cx, cy = (bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2
|
| 238 |
-
self.last_seen[best_id] = (cx, cy, time.time())
|
| 239 |
-
self.track_to_dog[track.track_id] = best_id
|
| 240 |
-
return best_id, best_score
|
| 241 |
else:
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
def
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
"
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
"""
|
| 2 |
+
enhanced_gradio_app.py - Enhanced Gradio Interface for Dog Monitoring
|
| 3 |
+
With SQLite database, dataset curation, and export features
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
"""
|
| 5 |
+
import gradio as gr
|
|
|
|
|
|
|
| 6 |
import cv2
|
| 7 |
+
import numpy as np
|
| 8 |
+
import pandas as pd
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import time
|
| 11 |
+
import json
|
| 12 |
+
import zipfile
|
| 13 |
+
import tempfile
|
| 14 |
+
from pathlib import Path
|
| 15 |
+
from typing import List, Dict, Optional, Tuple
|
| 16 |
+
from datetime import datetime
|
| 17 |
+
|
| 18 |
+
# Import core modules
|
| 19 |
+
from detection import DogDetector
|
| 20 |
+
from tracking import SimpleTracker
|
| 21 |
+
from reid import SimplifiedDogReID
|
| 22 |
+
from database import DogDatabase
|
| 23 |
+
from threshold_optimizer import ThresholdOptimizer
|
| 24 |
+
|
| 25 |
+
class EnhancedDogMonitoringApp:
|
| 26 |
+
"""Enhanced app with database and dataset management"""
|
| 27 |
+
|
| 28 |
+
def __init__(self, db_path: str = "dog_monitoring.db"):
|
| 29 |
+
"""Initialize the enhanced monitoring system"""
|
| 30 |
+
# Core components
|
| 31 |
+
self.detector = DogDetector(device='cuda')
|
| 32 |
+
self.tracker = SimpleTracker()
|
| 33 |
+
self.reid = SimplifiedDogReID(device='cuda')
|
| 34 |
+
|
| 35 |
+
# Database
|
| 36 |
+
self.db = DogDatabase(db_path)
|
| 37 |
+
|
| 38 |
+
# Threshold optimizer
|
| 39 |
+
self.threshold_optimizer = ThresholdOptimizer()
|
| 40 |
+
|
| 41 |
+
# Processing parameters
|
| 42 |
+
self.detection_confidence = 0.45
|
| 43 |
+
self.reid_threshold = 0.7
|
| 44 |
+
self.process_every_n_frames = 3
|
| 45 |
+
|
| 46 |
+
# Current session info
|
| 47 |
+
self.current_video_path = None
|
| 48 |
+
self.current_frame_count = 0
|
| 49 |
+
self.processing_active = False
|
| 50 |
+
|
| 51 |
+
def process_video(self, video_path: str, progress=None):
|
| 52 |
+
"""Process video with database storage"""
|
| 53 |
+
if not video_path:
|
| 54 |
+
return None, [], "No video uploaded"
|
| 55 |
+
|
| 56 |
+
self.current_video_path = video_path
|
| 57 |
+
self.processing_active = True
|
| 58 |
+
|
| 59 |
+
# Reset tracking for new video
|
| 60 |
+
self.tracker = SimpleTracker()
|
| 61 |
+
self.reid.reset()
|
| 62 |
+
|
| 63 |
+
# Open video
|
| 64 |
+
cap = cv2.VideoCapture(video_path)
|
| 65 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 66 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 67 |
+
|
| 68 |
+
# Prepare output
|
| 69 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 70 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 71 |
+
output_path = "output_video.mp4"
|
| 72 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 73 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
| 74 |
+
|
| 75 |
+
frame_count = 0
|
| 76 |
+
dogs_in_video = set()
|
| 77 |
+
|
| 78 |
+
while self.processing_active:
|
| 79 |
+
ret, frame = cap.read()
|
| 80 |
+
if not ret:
|
| 81 |
+
break
|
| 82 |
+
|
| 83 |
+
frame_count += 1
|
| 84 |
+
self.current_frame_count = frame_count
|
| 85 |
+
|
| 86 |
+
# Update progress
|
| 87 |
+
if progress and total_frames > 0:
|
| 88 |
+
progress(frame_count / total_frames,
|
| 89 |
+
f"Processing frame {frame_count}/{total_frames}")
|
| 90 |
+
|
| 91 |
+
# Process every Nth frame
|
| 92 |
+
if frame_count % self.process_every_n_frames == 0:
|
| 93 |
+
# Detect dogs
|
| 94 |
+
detections = self.detector.detect(frame)
|
| 95 |
+
|
| 96 |
+
# Update tracker
|
| 97 |
+
tracks = self.tracker.update(detections)
|
| 98 |
+
|
| 99 |
+
# Process each track
|
| 100 |
+
for track in tracks:
|
| 101 |
+
# Re-identify
|
| 102 |
+
dog_id, confidence = self.reid.match_or_register(track)
|
| 103 |
+
|
| 104 |
+
if dog_id > 0:
|
| 105 |
+
dogs_in_video.add(dog_id)
|
| 106 |
+
|
| 107 |
+
# Save to database
|
| 108 |
+
self._save_to_database(
|
| 109 |
+
dog_id, track, confidence,
|
| 110 |
+
frame_count, video_path
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
# Draw on frame
|
| 114 |
+
self._draw_track(frame, track, dog_id, confidence)
|
| 115 |
+
|
| 116 |
+
# Feed to optimizer
|
| 117 |
+
self.threshold_optimizer.add_reid_sample(
|
| 118 |
+
similarity=confidence,
|
| 119 |
+
matched_dog_id=dog_id
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
# Add overlay
|
| 123 |
+
self._add_overlay(frame, frame_count, len(dogs_in_video))
|
| 124 |
+
|
| 125 |
+
# Write frame
|
| 126 |
+
out.write(frame)
|
| 127 |
+
|
| 128 |
+
cap.release()
|
| 129 |
+
out.release()
|
| 130 |
+
|
| 131 |
+
self.processing_active = False
|
| 132 |
+
|
| 133 |
+
# Create summary
|
| 134 |
+
summary = f"Processed {frame_count} frames, detected {len(dogs_in_video)} unique dogs"
|
| 135 |
+
|
| 136 |
+
return output_path, self._get_dog_gallery(), summary
|
| 137 |
+
|
| 138 |
+
def _save_to_database(self, dog_id: int, track, confidence: float,
|
| 139 |
+
frame_number: int, video_source: str):
|
| 140 |
+
"""Save dog data to database"""
|
| 141 |
+
# Ensure dog exists in database
|
| 142 |
+
self.db.add_dog(dog_id)
|
| 143 |
+
|
| 144 |
+
# Get latest detection with image
|
| 145 |
+
detection = None
|
| 146 |
+
for det in reversed(track.detections):
|
| 147 |
+
if det.image_crop is not None:
|
| 148 |
+
detection = det
|
| 149 |
+
break
|
| 150 |
+
|
| 151 |
+
if detection:
|
| 152 |
+
# Save image
|
| 153 |
+
self.db.save_image(
|
| 154 |
+
dog_id=dog_id,
|
| 155 |
+
image=detection.image_crop,
|
| 156 |
+
frame_number=frame_number,
|
| 157 |
+
video_source=video_source,
|
| 158 |
+
bbox=detection.bbox,
|
| 159 |
+
confidence=confidence
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
# Save features
|
| 163 |
+
features = self.reid.dog_database.get(dog_id, [])
|
| 164 |
+
if features:
|
| 165 |
+
latest_feature = features[-1]
|
| 166 |
+
self.db.save_features(
|
| 167 |
+
dog_id=dog_id,
|
| 168 |
+
resnet_features=latest_feature.resnet_features,
|
| 169 |
+
color_histogram=latest_feature.color_histogram,
|
| 170 |
+
confidence=confidence
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
# Save sighting
|
| 174 |
+
bbox = detection.bbox
|
| 175 |
+
position = ((bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2)
|
| 176 |
+
self.db.add_sighting(
|
| 177 |
+
dog_id=dog_id,
|
| 178 |
+
position=position,
|
| 179 |
+
video_source=video_source,
|
| 180 |
+
frame_number=frame_number,
|
| 181 |
+
confidence=confidence
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
# Update dog sighting count
|
| 185 |
+
self.db.update_dog_sighting(dog_id)
|
| 186 |
+
|
| 187 |
+
def _draw_track(self, frame: np.ndarray, track, dog_id: int, confidence: float):
|
| 188 |
+
"""Draw bounding box with dog ID"""
|
| 189 |
+
bbox = track.bbox
|
| 190 |
+
x1, y1, x2, y2 = map(int, bbox)
|
| 191 |
+
|
| 192 |
+
# Color based on confidence
|
| 193 |
+
if confidence > 0.8:
|
| 194 |
+
color = (0, 255, 0)
|
| 195 |
+
elif confidence > 0.6:
|
| 196 |
+
color = (0, 165, 255)
|
| 197 |
else:
|
| 198 |
+
color = (0, 0, 255)
|
| 199 |
+
|
| 200 |
+
# Draw box and label
|
| 201 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
|
| 202 |
+
|
| 203 |
+
label = f"Dog #{dog_id} ({confidence:.0%})"
|
| 204 |
+
label_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)[0]
|
| 205 |
+
cv2.rectangle(frame, (x1, y1 - label_size[1] - 10),
|
| 206 |
+
(x1 + label_size[0], y1), color, -1)
|
| 207 |
+
cv2.putText(frame, label, (x1, y1 - 5),
|
| 208 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
|
| 209 |
+
|
| 210 |
+
def _add_overlay(self, frame: np.ndarray, frame_count: int, dog_count: int):
|
| 211 |
+
"""Add info overlay to frame"""
|
| 212 |
+
h, w = frame.shape[:2]
|
| 213 |
+
|
| 214 |
+
# Semi-transparent background
|
| 215 |
+
overlay = frame.copy()
|
| 216 |
+
cv2.rectangle(overlay, (10, 10), (250, 80), (0, 0, 0), -1)
|
| 217 |
+
frame[:] = cv2.addWeighted(overlay, 0.3, frame, 0.7, 0)
|
| 218 |
+
|
| 219 |
+
# Add text
|
| 220 |
+
cv2.putText(frame, f"Frame: {frame_count}", (20, 35),
|
| 221 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 1)
|
| 222 |
+
cv2.putText(frame, f"Dogs: {dog_count}", (20, 60),
|
| 223 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 1)
|
| 224 |
+
|
| 225 |
+
def _get_dog_gallery(self) -> List[Tuple[np.ndarray, str]]:
|
| 226 |
+
"""Get gallery of detected dogs from database"""
|
| 227 |
+
gallery = []
|
| 228 |
+
dogs = self.db.get_all_dogs()
|
| 229 |
+
|
| 230 |
+
for _, dog in dogs.head(12).iterrows():
|
| 231 |
+
images = self.db.get_dog_images(dog['dog_id'], include_discarded=False)
|
| 232 |
+
if images:
|
| 233 |
+
img = images[0]['image']
|
| 234 |
+
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 235 |
+
caption = f"Dog #{dog['dog_id']} | Sightings: {dog['total_sightings']}"
|
| 236 |
+
gallery.append((img_rgb, caption))
|
| 237 |
+
|
| 238 |
+
return gallery
|
| 239 |
+
|
| 240 |
+
# ========== Dataset Management Functions ==========
|
| 241 |
+
|
| 242 |
+
def get_dog_list(self) -> pd.DataFrame:
|
| 243 |
+
"""Get list of all dogs for management"""
|
| 244 |
+
dogs = self.db.get_all_dogs()
|
| 245 |
+
return dogs[['dog_id', 'name', 'first_seen', 'last_seen', 'total_sightings', 'status']]
|
| 246 |
+
|
| 247 |
+
def get_dog_images_for_review(self, dog_id: int) -> Tuple[List, List]:
|
| 248 |
+
"""Get dog images and body parts for review/validation"""
|
| 249 |
+
if dog_id is None:
|
| 250 |
+
return [], []
|
| 251 |
+
|
| 252 |
+
dog_id = int(dog_id)
|
| 253 |
+
|
| 254 |
+
# Get full images
|
| 255 |
+
images = self.db.get_dog_images(dog_id, include_discarded=True)
|
| 256 |
+
|
| 257 |
+
display_images = []
|
| 258 |
+
for img_data in images:
|
| 259 |
+
img_rgb = cv2.cvtColor(img_data['image'], cv2.COLOR_BGR2RGB)
|
| 260 |
+
status = "โ" if img_data['is_validated'] else "โ" if img_data['is_discarded'] else "?"
|
| 261 |
+
display_images.append({
|
| 262 |
+
'image': img_rgb,
|
| 263 |
+
'image_id': img_data['image_id'],
|
| 264 |
+
'status': status,
|
| 265 |
+
'confidence': img_data['confidence']
|
| 266 |
+
})
|
| 267 |
+
|
| 268 |
+
# Get body parts
|
| 269 |
+
body_parts = self.db.get_body_parts(dog_id, include_discarded=True)
|
| 270 |
+
|
| 271 |
+
display_parts = []
|
| 272 |
+
for part_data in body_parts:
|
| 273 |
+
part_rgb = cv2.cvtColor(part_data['image'], cv2.COLOR_BGR2RGB)
|
| 274 |
+
status = "โ" if part_data['is_validated'] else "โ" if part_data.get('is_discarded') else "?"
|
| 275 |
+
display_parts.append({
|
| 276 |
+
'image': part_rgb,
|
| 277 |
+
'part_id': part_data['part_id'],
|
| 278 |
+
'part_type': part_data['part_type'],
|
| 279 |
+
'status': status,
|
| 280 |
+
'confidence': part_data['confidence']
|
| 281 |
+
})
|
| 282 |
+
|
| 283 |
+
return display_images, display_parts
|
| 284 |
+
|
| 285 |
+
def validate_body_parts(self, part_ids: List[int], action: str) -> str:
|
| 286 |
+
"""Validate or discard body parts"""
|
| 287 |
+
if not part_ids:
|
| 288 |
+
return "No parts selected"
|
| 289 |
+
|
| 290 |
+
count = 0
|
| 291 |
+
for part_id in part_ids:
|
| 292 |
+
if action == "validate":
|
| 293 |
+
self.db.validate_body_part(part_id, is_valid=True)
|
| 294 |
+
elif action == "discard":
|
| 295 |
+
self.db.validate_body_part(part_id, is_valid=False)
|
| 296 |
+
count += 1
|
| 297 |
+
|
| 298 |
+
return f"Updated {count} body parts"
|
| 299 |
+
|
| 300 |
+
def validate_images(self, dog_id: int, image_ids: List[int], action: str) -> str:
|
| 301 |
+
"""Validate or discard images"""
|
| 302 |
+
if not image_ids:
|
| 303 |
+
return "No images selected"
|
| 304 |
+
|
| 305 |
+
count = 0
|
| 306 |
+
for img_id in image_ids:
|
| 307 |
+
if action == "validate":
|
| 308 |
+
self.db.validate_image(img_id, is_valid=True)
|
| 309 |
+
elif action == "discard":
|
| 310 |
+
self.db.validate_image(img_id, is_valid=False)
|
| 311 |
+
count += 1
|
| 312 |
+
|
| 313 |
+
return f"Updated {count} images"
|
| 314 |
+
|
| 315 |
+
def merge_dogs_handler(self, keep_id: int, merge_id: int) -> str:
|
| 316 |
+
"""Handle dog merging"""
|
| 317 |
+
if keep_id == merge_id:
|
| 318 |
+
return "Cannot merge dog with itself"
|
| 319 |
+
|
| 320 |
+
if self.db.merge_dogs(keep_id, merge_id):
|
| 321 |
+
return f"Successfully merged Dog #{merge_id} into Dog #{keep_id}"
|
| 322 |
+
else:
|
| 323 |
+
return "Failed to merge dogs"
|
| 324 |
+
|
| 325 |
+
def export_dataset(self, output_format: str, validated_only: bool) -> str:
|
| 326 |
+
"""Export dataset for training"""
|
| 327 |
try:
|
| 328 |
+
# Create temporary directory
|
| 329 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
| 330 |
+
# Export dataset
|
| 331 |
+
metadata = self.db.export_training_dataset(
|
| 332 |
+
temp_dir,
|
| 333 |
+
validated_only=validated_only
|
| 334 |
+
)
|
| 335 |
+
|
| 336 |
+
# Create zip file
|
| 337 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 338 |
+
zip_path = f"dog_dataset_{timestamp}.zip"
|
| 339 |
+
|
| 340 |
+
with zipfile.ZipFile(zip_path, 'w') as zipf:
|
| 341 |
+
for root, dirs, files in Path(temp_dir).walk():
|
| 342 |
+
for file in files:
|
| 343 |
+
file_path = Path(root) / file
|
| 344 |
+
arcname = file_path.relative_to(temp_dir)
|
| 345 |
+
zipf.write(file_path, arcname)
|
| 346 |
+
|
| 347 |
+
return f"Dataset exported: {zip_path} ({metadata['total_images']} images)"
|
| 348 |
+
|
| 349 |
except Exception as e:
|
| 350 |
+
return f"Export failed: {str(e)}"
|
| 351 |
+
|
| 352 |
+
def reset_database_handler(self, confirm_text: str) -> str:
|
| 353 |
+
"""Handle database reset"""
|
| 354 |
+
if confirm_text.lower() != "reset":
|
| 355 |
+
return "Type 'reset' to confirm database reset"
|
| 356 |
+
|
| 357 |
+
if self.db.reset_database(confirm=True):
|
| 358 |
+
self.reid.reset()
|
| 359 |
+
return "Database reset successfully"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 360 |
else:
|
| 361 |
+
return "Database reset failed"
|
| 362 |
+
|
| 363 |
+
def get_database_stats(self) -> str:
|
| 364 |
+
"""Get database statistics"""
|
| 365 |
+
stats = self.db.get_database_statistics()
|
| 366 |
+
|
| 367 |
+
return f"""
|
| 368 |
+
๐ Database Statistics:
|
| 369 |
+
โข Active Dogs: {stats['total_active_dogs']}
|
| 370 |
+
โข Total Images: {stats['total_images']}
|
| 371 |
+
โข Validated Images: {stats['validated_images']}
|
| 372 |
+
โข Total Sightings: {stats['total_sightings']}
|
| 373 |
+
|
| 374 |
+
๐ Most Seen: {stats.get('most_seen_dog', {}).get('name', 'None')}
|
| 375 |
+
({stats.get('most_seen_dog', {}).get('sightings', 0)} sightings)
|
| 376 |
+
"""
|
| 377 |
+
|
| 378 |
+
def stop_processing(self):
|
| 379 |
+
"""Stop video processing"""
|
| 380 |
+
self.processing_active = False
|
| 381 |
+
return "Processing stopped"
|
| 382 |
+
|
| 383 |
+
# ========== Gradio Interface ==========
|
| 384 |
+
|
| 385 |
+
def create_interface(self) -> gr.Blocks:
|
| 386 |
+
"""Create enhanced Gradio interface"""
|
| 387 |
+
with gr.Blocks(title="Enhanced Dog Monitoring System", theme=gr.themes.Soft()) as app:
|
| 388 |
+
gr.Markdown("""
|
| 389 |
+
# ๐ Enhanced Stray Dog Monitoring System
|
| 390 |
+
**Detection โข Tracking โข Re-ID โข Database โข Dataset Export**
|
| 391 |
+
""")
|
| 392 |
+
|
| 393 |
+
with gr.Tabs():
|
| 394 |
+
# Tab 1: Video Processing
|
| 395 |
+
with gr.Tab("๐น Process Video"):
|
| 396 |
+
with gr.Row():
|
| 397 |
+
with gr.Column(scale=1):
|
| 398 |
+
video_input = gr.Video(label="Upload Video")
|
| 399 |
+
|
| 400 |
+
with gr.Row():
|
| 401 |
+
process_btn = gr.Button("โถ๏ธ Process", variant="primary")
|
| 402 |
+
stop_btn = gr.Button("โน๏ธ Stop")
|
| 403 |
+
|
| 404 |
+
# Settings
|
| 405 |
+
gr.Markdown("### Settings")
|
| 406 |
+
detection_slider = gr.Slider(
|
| 407 |
+
0.1, 0.9, 0.45, step=0.05,
|
| 408 |
+
label="Detection Confidence"
|
| 409 |
+
)
|
| 410 |
+
reid_slider = gr.Slider(
|
| 411 |
+
0.3, 0.95, 0.7, step=0.05,
|
| 412 |
+
label="ReID Threshold"
|
| 413 |
+
)
|
| 414 |
+
frame_skip = gr.Slider(
|
| 415 |
+
1, 10, 3, step=1,
|
| 416 |
+
label="Process Every N Frames"
|
| 417 |
+
)
|
| 418 |
+
|
| 419 |
+
with gr.Column(scale=2):
|
| 420 |
+
video_output = gr.Video(label="Processed Video")
|
| 421 |
+
processing_status = gr.Textbox(label="Status")
|
| 422 |
+
dog_gallery = gr.Gallery(
|
| 423 |
+
label="Detected Dogs",
|
| 424 |
+
columns=4,
|
| 425 |
+
rows=3
|
| 426 |
+
)
|
| 427 |
+
|
| 428 |
+
# Tab 2: Dog Management
|
| 429 |
+
with gr.Tab("๐ถ Manage Dogs"):
|
| 430 |
+
with gr.Row():
|
| 431 |
+
with gr.Column(scale=1):
|
| 432 |
+
gr.Markdown("### Dog Registry")
|
| 433 |
+
refresh_btn = gr.Button("๐ Refresh List")
|
| 434 |
+
dog_table = gr.Dataframe(
|
| 435 |
+
headers=["ID", "Name", "First Seen", "Last Seen", "Sightings", "Status"],
|
| 436 |
+
interactive=False
|
| 437 |
+
)
|
| 438 |
+
|
| 439 |
+
# Merge dogs
|
| 440 |
+
gr.Markdown("### Merge Dogs")
|
| 441 |
+
with gr.Row():
|
| 442 |
+
keep_dog_id = gr.Number(label="Keep Dog ID", precision=0)
|
| 443 |
+
merge_dog_id = gr.Number(label="Merge Dog ID", precision=0)
|
| 444 |
+
merge_btn = gr.Button("๐ Merge Dogs")
|
| 445 |
+
merge_status = gr.Textbox(label="Merge Status")
|
| 446 |
+
|
| 447 |
+
with gr.Column(scale=2):
|
| 448 |
+
gr.Markdown("### Review Dog Images & Body Parts")
|
| 449 |
+
selected_dog_id = gr.Number(
|
| 450 |
+
label="Dog ID to Review",
|
| 451 |
+
precision=0
|
| 452 |
+
)
|
| 453 |
+
load_images_btn = gr.Button("๐ท Load Images")
|
| 454 |
+
|
| 455 |
+
with gr.Tab("Full Images"):
|
| 456 |
+
dog_images_gallery = gr.Gallery(
|
| 457 |
+
label="Full Dog Images",
|
| 458 |
+
columns=4,
|
| 459 |
+
rows=3,
|
| 460 |
+
height=300
|
| 461 |
+
)
|
| 462 |
+
|
| 463 |
+
with gr.Row():
|
| 464 |
+
selected_images = gr.CheckboxGroup(
|
| 465 |
+
label="Select Images",
|
| 466 |
+
choices=[]
|
| 467 |
+
)
|
| 468 |
+
|
| 469 |
+
with gr.Row():
|
| 470 |
+
validate_imgs_btn = gr.Button("โ
Validate Selected")
|
| 471 |
+
discard_imgs_btn = gr.Button("โ Discard Selected")
|
| 472 |
+
|
| 473 |
+
with gr.Tab("Body Parts"):
|
| 474 |
+
body_parts_gallery = gr.Gallery(
|
| 475 |
+
label="Body Part Crops",
|
| 476 |
+
columns=4,
|
| 477 |
+
rows=3,
|
| 478 |
+
height=300
|
| 479 |
+
)
|
| 480 |
+
|
| 481 |
+
gr.Markdown("""
|
| 482 |
+
**Part Types**:
|
| 483 |
+
- Head (top 35% of dog)
|
| 484 |
+
- Torso (middle 40%)
|
| 485 |
+
- Rear (bottom 40%)
|
| 486 |
+
|
| 487 |
+
Validate correctly cropped parts, discard mixed/wrong crops.
|
| 488 |
+
""")
|
| 489 |
+
|
| 490 |
+
with gr.Row():
|
| 491 |
+
selected_parts = gr.CheckboxGroup(
|
| 492 |
+
label="Select Parts",
|
| 493 |
+
choices=[]
|
| 494 |
+
)
|
| 495 |
+
|
| 496 |
+
with gr.Row():
|
| 497 |
+
validate_parts_btn = gr.Button("โ
Validate Parts")
|
| 498 |
+
discard_parts_btn = gr.Button("โ Discard Parts")
|
| 499 |
+
|
| 500 |
+
validation_status = gr.Textbox(label="Validation Status")
|
| 501 |
+
|
| 502 |
+
# Tab 3: Dataset Export
|
| 503 |
+
with gr.Tab("๐พ Export Dataset"):
|
| 504 |
+
gr.Markdown("""
|
| 505 |
+
### Export Training Dataset
|
| 506 |
+
Export validated dog images for ResNet fine-tuning
|
| 507 |
+
""")
|
| 508 |
+
|
| 509 |
+
with gr.Row():
|
| 510 |
+
with gr.Column():
|
| 511 |
+
export_format = gr.Radio(
|
| 512 |
+
["Images + CSV", "COCO Format", "YOLO Format"],
|
| 513 |
+
value="Images + CSV",
|
| 514 |
+
label="Export Format"
|
| 515 |
+
)
|
| 516 |
+
|
| 517 |
+
validated_only = gr.Checkbox(
|
| 518 |
+
label="Export validated images only",
|
| 519 |
+
value=True
|
| 520 |
+
)
|
| 521 |
+
|
| 522 |
+
export_btn = gr.Button("๐ฆ Export Dataset", variant="primary")
|
| 523 |
+
export_status = gr.Textbox(label="Export Status")
|
| 524 |
+
|
| 525 |
+
gr.Markdown("""
|
| 526 |
+
### Dataset Info
|
| 527 |
+
The exported dataset includes:
|
| 528 |
+
- Individual dog images organized by ID
|
| 529 |
+
- CSV file with labels and metadata
|
| 530 |
+
- Bounding box annotations
|
| 531 |
+
- Pose keypoints (if available)
|
| 532 |
+
|
| 533 |
+
Use this dataset to fine-tune ResNet for better re-identification!
|
| 534 |
+
""")
|
| 535 |
+
|
| 536 |
+
with gr.Column():
|
| 537 |
+
stats_display = gr.Textbox(
|
| 538 |
+
label="Database Statistics",
|
| 539 |
+
lines=10
|
| 540 |
+
)
|
| 541 |
+
refresh_stats_btn = gr.Button("๐ Refresh Stats")
|
| 542 |
+
|
| 543 |
+
# Tab 4: Database Management
|
| 544 |
+
with gr.Tab("โ๏ธ Database"):
|
| 545 |
+
gr.Markdown("### Database Management")
|
| 546 |
+
|
| 547 |
+
with gr.Row():
|
| 548 |
+
with gr.Column():
|
| 549 |
+
gr.Markdown("""
|
| 550 |
+
โ ๏ธ **Warning**: Resetting the database will delete all data!
|
| 551 |
+
Type 'reset' to confirm.
|
| 552 |
+
""")
|
| 553 |
+
|
| 554 |
+
reset_confirm = gr.Textbox(
|
| 555 |
+
label="Type 'reset' to confirm",
|
| 556 |
+
placeholder="reset"
|
| 557 |
+
)
|
| 558 |
+
|
| 559 |
+
reset_btn = gr.Button("๐๏ธ Reset Database", variant="stop")
|
| 560 |
+
reset_status = gr.Textbox(label="Reset Status")
|
| 561 |
+
|
| 562 |
+
gr.Markdown("### Database Optimization")
|
| 563 |
+
optimize_btn = gr.Button("๐ง Optimize Database")
|
| 564 |
+
optimize_status = gr.Textbox(label="Optimization Status")
|
| 565 |
+
|
| 566 |
+
# Event handlers
|
| 567 |
+
|
| 568 |
+
# Video processing
|
| 569 |
+
process_btn.click(
|
| 570 |
+
self.process_video,
|
| 571 |
+
inputs=[video_input],
|
| 572 |
+
outputs=[video_output, dog_gallery, processing_status]
|
| 573 |
+
)
|
| 574 |
+
|
| 575 |
+
stop_btn.click(
|
| 576 |
+
self.stop_processing,
|
| 577 |
+
outputs=[processing_status]
|
| 578 |
+
)
|
| 579 |
+
|
| 580 |
+
# Settings updates
|
| 581 |
+
detection_slider.change(
|
| 582 |
+
lambda v: setattr(self, 'detection_confidence', v) or f"Detection: {v:.2f}",
|
| 583 |
+
inputs=[detection_slider],
|
| 584 |
+
outputs=[processing_status]
|
| 585 |
+
)
|
| 586 |
+
|
| 587 |
+
reid_slider.change(
|
| 588 |
+
lambda v: setattr(self, 'reid_threshold', v) or f"ReID: {v:.2f}",
|
| 589 |
+
inputs=[reid_slider],
|
| 590 |
+
outputs=[processing_status]
|
| 591 |
+
)
|
| 592 |
+
|
| 593 |
+
frame_skip.change(
|
| 594 |
+
lambda v: setattr(self, 'process_every_n_frames', int(v)) or f"Skip: {int(v)}",
|
| 595 |
+
inputs=[frame_skip],
|
| 596 |
+
outputs=[processing_status]
|
| 597 |
+
)
|
| 598 |
+
|
| 599 |
+
# Dog management
|
| 600 |
+
refresh_btn.click(
|
| 601 |
+
self.get_dog_list,
|
| 602 |
+
outputs=[dog_table]
|
| 603 |
+
)
|
| 604 |
+
|
| 605 |
+
merge_btn.click(
|
| 606 |
+
self.merge_dogs_handler,
|
| 607 |
+
inputs=[keep_dog_id, merge_dog_id],
|
| 608 |
+
outputs=[merge_status]
|
| 609 |
+
)
|
| 610 |
+
|
| 611 |
+
def load_dog_images(dog_id):
|
| 612 |
+
if dog_id is None:
|
| 613 |
+
return [], [], [], [], "No dog selected"
|
| 614 |
+
|
| 615 |
+
images, parts = self.get_dog_images_for_review(int(dog_id))
|
| 616 |
+
|
| 617 |
+
# Format full images
|
| 618 |
+
img_gallery = [(img['image'], f"{img['status']} | {img['confidence']:.1%}")
|
| 619 |
+
for img in images]
|
| 620 |
+
img_choices = [f"Image {i+1}" for i in range(len(images))]
|
| 621 |
+
|
| 622 |
+
# Format body parts with type labels
|
| 623 |
+
part_gallery = [(p['image'], f"{p['part_type'].upper()} {p['status']} | {p['confidence']:.1%}")
|
| 624 |
+
for p in parts]
|
| 625 |
+
part_choices = [f"{p['part_type'].capitalize()} {i+1}" for i, p in enumerate(parts)]
|
| 626 |
+
|
| 627 |
+
return (img_gallery, gr.update(choices=img_choices),
|
| 628 |
+
part_gallery, gr.update(choices=part_choices),
|
| 629 |
+
f"Loaded {len(images)} images, {len(parts)} body parts")
|
| 630 |
+
|
| 631 |
+
load_images_btn.click(
|
| 632 |
+
load_dog_images,
|
| 633 |
+
inputs=[selected_dog_id],
|
| 634 |
+
outputs=[dog_images_gallery, selected_images,
|
| 635 |
+
body_parts_gallery, selected_parts, validation_status]
|
| 636 |
+
)
|
| 637 |
+
|
| 638 |
+
# Validate/discard body parts
|
| 639 |
+
validate_parts_btn.click(
|
| 640 |
+
self.validate_body_parts,
|
| 641 |
+
inputs=[selected_parts, gr.State("validate")],
|
| 642 |
+
outputs=[validation_status]
|
| 643 |
+
)
|
| 644 |
+
|
| 645 |
+
discard_parts_btn.click(
|
| 646 |
+
self.validate_body_parts,
|
| 647 |
+
inputs=[selected_parts, gr.State("discard")],
|
| 648 |
+
outputs=[validation_status]
|
| 649 |
+
)
|
| 650 |
+
|
| 651 |
+
# Dataset export
|
| 652 |
+
export_btn.click(
|
| 653 |
+
self.export_dataset,
|
| 654 |
+
inputs=[export_format, validated_only],
|
| 655 |
+
outputs=[export_status]
|
| 656 |
+
)
|
| 657 |
+
|
| 658 |
+
refresh_stats_btn.click(
|
| 659 |
+
self.get_database_stats,
|
| 660 |
+
outputs=[stats_display]
|
| 661 |
+
)
|
| 662 |
+
|
| 663 |
+
# Database management
|
| 664 |
+
reset_btn.click(
|
| 665 |
+
self.reset_database_handler,
|
| 666 |
+
inputs=[reset_confirm],
|
| 667 |
+
outputs=[reset_status]
|
| 668 |
+
)
|
| 669 |
+
|
| 670 |
+
def optimize_database():
|
| 671 |
+
self.db.vacuum()
|
| 672 |
+
return "Database optimized"
|
| 673 |
+
|
| 674 |
+
optimize_btn.click(
|
| 675 |
+
optimize_database,
|
| 676 |
+
outputs=[optimize_status]
|
| 677 |
+
)
|
| 678 |
+
|
| 679 |
+
# Load initial data
|
| 680 |
+
app.load(
|
| 681 |
+
self.get_dog_list,
|
| 682 |
+
outputs=[dog_table]
|
| 683 |
+
)
|
| 684 |
+
|
| 685 |
+
app.load(
|
| 686 |
+
self.get_database_stats,
|
| 687 |
+
outputs=[stats_display]
|
| 688 |
+
)
|
| 689 |
+
|
| 690 |
+
return app
|
| 691 |
+
|
| 692 |
+
def main():
|
| 693 |
+
"""Launch the enhanced application"""
|
| 694 |
+
app = EnhancedDogMonitoringApp()
|
| 695 |
+
interface = app.create_interface()
|
| 696 |
+
|
| 697 |
+
interface.launch(
|
| 698 |
+
server_name="0.0.0.0",
|
| 699 |
+
server_port=7860,
|
| 700 |
+
share=False,
|
| 701 |
+
show_error=True
|
| 702 |
+
)
|
| 703 |
+
|
| 704 |
+
if __name__ == "__main__":
|
| 705 |
+
main()
|