Spaces:
Sleeping
Sleeping
Update reid.py
Browse files
reid.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
"""
|
| 2 |
-
reid.py -
|
| 3 |
-
|
| 4 |
"""
|
| 5 |
import numpy as np
|
| 6 |
import cv2
|
|
@@ -21,20 +21,30 @@ class DogFeatures:
|
|
| 21 |
features: np.ndarray
|
| 22 |
confidence: float = 0
|
| 23 |
quality_score: float = 0.5
|
|
|
|
| 24 |
|
| 25 |
class SingleModelReID:
|
| 26 |
-
"""
|
| 27 |
|
| 28 |
def __init__(self, device: str = 'cuda'):
|
| 29 |
self.device = device if torch.cuda.is_available() else 'cpu'
|
| 30 |
-
self.similarity_threshold = 0.40 # Default threshold
|
| 31 |
|
| 32 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
self.dog_database = {} # dog_id -> list of features
|
| 34 |
self.next_dog_id = 1
|
| 35 |
|
| 36 |
-
# Track to dog mapping
|
| 37 |
self.track_to_dog = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
try:
|
| 40 |
# Initialize ResNet50
|
|
@@ -42,26 +52,33 @@ class SingleModelReID:
|
|
| 42 |
self.model = nn.Sequential(*list(self.model.children())[:-1])
|
| 43 |
self.model.to(self.device).eval()
|
| 44 |
|
| 45 |
-
#
|
| 46 |
self.transform = transforms.Compose([
|
| 47 |
transforms.ToPILImage(),
|
| 48 |
-
transforms.Resize((
|
|
|
|
| 49 |
transforms.ToTensor(),
|
| 50 |
transforms.Normalize(
|
| 51 |
mean=[0.485, 0.456, 0.406],
|
| 52 |
std=[0.229, 0.224, 0.225]
|
| 53 |
)
|
| 54 |
])
|
| 55 |
-
print("ResNet50 ReID initialized
|
| 56 |
except Exception as e:
|
| 57 |
print(f"ResNet50 init error: {e}")
|
| 58 |
self.model = None
|
| 59 |
|
| 60 |
def extract_features(self, image: np.ndarray) -> Optional[np.ndarray]:
|
| 61 |
-
"""Extract ResNet50 features"""
|
| 62 |
if self.model is None or image is None or image.size == 0:
|
| 63 |
return None
|
| 64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
try:
|
| 66 |
img_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 67 |
img_tensor = self.transform(img_rgb).unsqueeze(0).to(self.device)
|
|
@@ -77,10 +94,12 @@ class SingleModelReID:
|
|
| 77 |
return None
|
| 78 |
|
| 79 |
def match_or_register(self, track) -> Tuple[int, float]:
|
| 80 |
-
"""
|
| 81 |
-
|
|
|
|
|
|
|
| 82 |
detection = None
|
| 83 |
-
for det in reversed(track.detections):
|
| 84 |
if det.image_crop is not None:
|
| 85 |
detection = det
|
| 86 |
break
|
|
@@ -88,72 +107,151 @@ class SingleModelReID:
|
|
| 88 |
if detection is None:
|
| 89 |
return 0, 0.0
|
| 90 |
|
| 91 |
-
# Check
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
if track.track_id in self.track_to_dog:
|
| 93 |
-
# Track continuity - keep same dog ID
|
| 94 |
existing_dog_id = self.track_to_dog[track.track_id]
|
| 95 |
|
| 96 |
-
# Update features
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
if
|
| 100 |
-
self.dog_database
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
-
|
|
|
|
|
|
|
| 108 |
|
| 109 |
-
# Extract features for
|
| 110 |
features = self.extract_features(detection.image_crop)
|
| 111 |
if features is None:
|
| 112 |
return 0, 0.0
|
| 113 |
|
| 114 |
-
# Find best match
|
| 115 |
best_dog_id = None
|
| 116 |
best_score = -1.0
|
|
|
|
| 117 |
|
| 118 |
for dog_id, feature_list in self.dog_database.items():
|
| 119 |
if not feature_list:
|
| 120 |
continue
|
| 121 |
|
| 122 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
similarities = []
|
| 124 |
-
|
|
|
|
|
|
|
| 125 |
sim = cosine_similarity(
|
| 126 |
features.reshape(1, -1),
|
| 127 |
dog_feat.features.reshape(1, -1)
|
| 128 |
)[0, 0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
similarities.append(sim)
|
|
|
|
| 130 |
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
if avg_similarity > best_score:
|
| 134 |
best_score = avg_similarity
|
| 135 |
best_dog_id = dog_id
|
| 136 |
|
| 137 |
-
#
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
)
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
|
| 158 |
def match_or_register_all(self, track) -> Dict:
|
| 159 |
"""Compatible interface"""
|
|
@@ -170,11 +268,16 @@ class SingleModelReID:
|
|
| 170 |
"""Reset all temporary data"""
|
| 171 |
self.dog_database.clear()
|
| 172 |
self.track_to_dog.clear()
|
|
|
|
|
|
|
| 173 |
self.next_dog_id = 1
|
|
|
|
| 174 |
|
| 175 |
def set_all_thresholds(self, threshold: float):
|
| 176 |
-
"""Set similarity
|
| 177 |
-
self.
|
|
|
|
|
|
|
| 178 |
|
| 179 |
def get_statistics(self) -> Dict:
|
| 180 |
"""Get statistics"""
|
|
@@ -182,8 +285,10 @@ class SingleModelReID:
|
|
| 182 |
'ResNet50': {
|
| 183 |
'total_dogs': self.next_dog_id - 1,
|
| 184 |
'dogs_in_database': len(self.dog_database),
|
| 185 |
-
'
|
| 186 |
-
|
|
|
|
|
|
|
| 187 |
}
|
| 188 |
}
|
| 189 |
|
|
|
|
| 1 |
"""
|
| 2 |
+
reid.py - Improved Single-Model Dog Re-Identification System
|
| 3 |
+
Enhanced with better feature matching and temporal consistency
|
| 4 |
"""
|
| 5 |
import numpy as np
|
| 6 |
import cv2
|
|
|
|
| 21 |
features: np.ndarray
|
| 22 |
confidence: float = 0
|
| 23 |
quality_score: float = 0.5
|
| 24 |
+
frame_num: int = 0
|
| 25 |
|
| 26 |
class SingleModelReID:
|
| 27 |
+
"""Improved ReID with better matching strategies"""
|
| 28 |
|
| 29 |
def __init__(self, device: str = 'cuda'):
|
| 30 |
self.device = device if torch.cuda.is_available() else 'cpu'
|
|
|
|
| 31 |
|
| 32 |
+
# Adaptive thresholds
|
| 33 |
+
self.primary_threshold = 0.45 # Main matching threshold
|
| 34 |
+
self.secondary_threshold = 0.35 # Lower threshold for recent tracks
|
| 35 |
+
self.new_dog_threshold = 0.55 # Higher threshold to create new dog
|
| 36 |
+
|
| 37 |
+
# In-memory dog database
|
| 38 |
self.dog_database = {} # dog_id -> list of features
|
| 39 |
self.next_dog_id = 1
|
| 40 |
|
| 41 |
+
# Track to dog mapping with confidence history
|
| 42 |
self.track_to_dog = {}
|
| 43 |
+
self.track_confidence = {} # track_id -> list of confidences
|
| 44 |
+
|
| 45 |
+
# Temporal consistency
|
| 46 |
+
self.recent_matches = {} # dog_id -> last_frame_seen
|
| 47 |
+
self.current_frame = 0
|
| 48 |
|
| 49 |
try:
|
| 50 |
# Initialize ResNet50
|
|
|
|
| 52 |
self.model = nn.Sequential(*list(self.model.children())[:-1])
|
| 53 |
self.model.to(self.device).eval()
|
| 54 |
|
| 55 |
+
# Enhanced preprocessing with augmentation options
|
| 56 |
self.transform = transforms.Compose([
|
| 57 |
transforms.ToPILImage(),
|
| 58 |
+
transforms.Resize((256, 256)), # Slightly larger for better features
|
| 59 |
+
transforms.CenterCrop(224),
|
| 60 |
transforms.ToTensor(),
|
| 61 |
transforms.Normalize(
|
| 62 |
mean=[0.485, 0.456, 0.406],
|
| 63 |
std=[0.229, 0.224, 0.225]
|
| 64 |
)
|
| 65 |
])
|
| 66 |
+
print("Enhanced ResNet50 ReID initialized")
|
| 67 |
except Exception as e:
|
| 68 |
print(f"ResNet50 init error: {e}")
|
| 69 |
self.model = None
|
| 70 |
|
| 71 |
def extract_features(self, image: np.ndarray) -> Optional[np.ndarray]:
|
| 72 |
+
"""Extract ResNet50 features with quality check"""
|
| 73 |
if self.model is None or image is None or image.size == 0:
|
| 74 |
return None
|
| 75 |
|
| 76 |
+
# Quality check - skip blurry images
|
| 77 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 78 |
+
laplacian_var = cv2.Laplacian(gray, cv2.CV_64F).var()
|
| 79 |
+
if laplacian_var < 50: # Too blurry
|
| 80 |
+
return None
|
| 81 |
+
|
| 82 |
try:
|
| 83 |
img_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 84 |
img_tensor = self.transform(img_rgb).unsqueeze(0).to(self.device)
|
|
|
|
| 94 |
return None
|
| 95 |
|
| 96 |
def match_or_register(self, track) -> Tuple[int, float]:
|
| 97 |
+
"""Enhanced matching with temporal consistency"""
|
| 98 |
+
self.current_frame += 1
|
| 99 |
+
|
| 100 |
+
# Get latest good quality detection
|
| 101 |
detection = None
|
| 102 |
+
for det in reversed(track.detections[-5:]): # Check last 5 detections
|
| 103 |
if det.image_crop is not None:
|
| 104 |
detection = det
|
| 105 |
break
|
|
|
|
| 107 |
if detection is None:
|
| 108 |
return 0, 0.0
|
| 109 |
|
| 110 |
+
# Check track confidence history
|
| 111 |
+
if track.track_id not in self.track_confidence:
|
| 112 |
+
self.track_confidence[track.track_id] = []
|
| 113 |
+
|
| 114 |
+
# If track already has consistent dog ID
|
| 115 |
if track.track_id in self.track_to_dog:
|
|
|
|
| 116 |
existing_dog_id = self.track_to_dog[track.track_id]
|
| 117 |
|
| 118 |
+
# Update features periodically (not every frame to save memory)
|
| 119 |
+
if self.current_frame % 3 == 0:
|
| 120 |
+
features = self.extract_features(detection.image_crop)
|
| 121 |
+
if features is not None:
|
| 122 |
+
if existing_dog_id in self.dog_database:
|
| 123 |
+
# Add with frame number for temporal reference
|
| 124 |
+
self.dog_database[existing_dog_id].append(
|
| 125 |
+
DogFeatures(
|
| 126 |
+
features=features,
|
| 127 |
+
confidence=detection.confidence,
|
| 128 |
+
frame_num=self.current_frame
|
| 129 |
+
)
|
| 130 |
+
)
|
| 131 |
+
# Keep only recent and high-quality features
|
| 132 |
+
self._prune_features(existing_dog_id)
|
| 133 |
+
|
| 134 |
+
# Update recent matches
|
| 135 |
+
self.recent_matches[existing_dog_id] = self.current_frame
|
| 136 |
|
| 137 |
+
# Calculate running confidence
|
| 138 |
+
recent_conf = np.mean(self.track_confidence[track.track_id][-10:]) if self.track_confidence[track.track_id] else detection.confidence
|
| 139 |
+
return existing_dog_id, recent_conf
|
| 140 |
|
| 141 |
+
# Extract features for matching
|
| 142 |
features = self.extract_features(detection.image_crop)
|
| 143 |
if features is None:
|
| 144 |
return 0, 0.0
|
| 145 |
|
| 146 |
+
# Find best match with adaptive thresholds
|
| 147 |
best_dog_id = None
|
| 148 |
best_score = -1.0
|
| 149 |
+
match_details = {}
|
| 150 |
|
| 151 |
for dog_id, feature_list in self.dog_database.items():
|
| 152 |
if not feature_list:
|
| 153 |
continue
|
| 154 |
|
| 155 |
+
# Check temporal proximity (bonus for recently seen dogs)
|
| 156 |
+
recency_bonus = 0.0
|
| 157 |
+
if dog_id in self.recent_matches:
|
| 158 |
+
frames_since = self.current_frame - self.recent_matches[dog_id]
|
| 159 |
+
if frames_since < 30: # Within 1 second at 30fps
|
| 160 |
+
recency_bonus = 0.05 * (1 - frames_since / 30)
|
| 161 |
+
|
| 162 |
+
# Weighted similarity based on feature quality and recency
|
| 163 |
similarities = []
|
| 164 |
+
weights = []
|
| 165 |
+
|
| 166 |
+
for dog_feat in feature_list[-8:]: # Use last 8 features
|
| 167 |
sim = cosine_similarity(
|
| 168 |
features.reshape(1, -1),
|
| 169 |
dog_feat.features.reshape(1, -1)
|
| 170 |
)[0, 0]
|
| 171 |
+
|
| 172 |
+
# Weight by confidence and recency
|
| 173 |
+
weight = dog_feat.confidence
|
| 174 |
+
if hasattr(dog_feat, 'frame_num'):
|
| 175 |
+
age = self.current_frame - dog_feat.frame_num
|
| 176 |
+
weight *= np.exp(-age / 100) # Exponential decay
|
| 177 |
+
|
| 178 |
similarities.append(sim)
|
| 179 |
+
weights.append(weight)
|
| 180 |
|
| 181 |
+
# Weighted average
|
| 182 |
+
if weights:
|
| 183 |
+
weights = np.array(weights)
|
| 184 |
+
weights = weights / weights.sum()
|
| 185 |
+
avg_similarity = np.average(similarities, weights=weights) + recency_bonus
|
| 186 |
+
else:
|
| 187 |
+
avg_similarity = np.mean(similarities) + recency_bonus
|
| 188 |
+
|
| 189 |
+
match_details[dog_id] = avg_similarity
|
| 190 |
|
| 191 |
if avg_similarity > best_score:
|
| 192 |
best_score = avg_similarity
|
| 193 |
best_dog_id = dog_id
|
| 194 |
|
| 195 |
+
# Adaptive threshold based on context
|
| 196 |
+
threshold = self.primary_threshold
|
| 197 |
+
if best_dog_id and best_dog_id in self.recent_matches:
|
| 198 |
+
# Lower threshold for recently seen dogs
|
| 199 |
+
if self.current_frame - self.recent_matches[best_dog_id] < 60:
|
| 200 |
+
threshold = self.secondary_threshold
|
| 201 |
+
|
| 202 |
+
# Decision logic
|
| 203 |
+
if best_dog_id is not None and best_score >= threshold:
|
| 204 |
+
# Match found - but verify it's not too different
|
| 205 |
+
if best_score < self.new_dog_threshold or len(match_details) < 3:
|
| 206 |
+
# Accept match
|
| 207 |
+
self.dog_database[best_dog_id].append(
|
| 208 |
+
DogFeatures(
|
| 209 |
+
features=features,
|
| 210 |
+
confidence=detection.confidence,
|
| 211 |
+
frame_num=self.current_frame
|
| 212 |
+
)
|
| 213 |
+
)
|
| 214 |
+
self._prune_features(best_dog_id)
|
| 215 |
+
|
| 216 |
+
self.track_to_dog[track.track_id] = best_dog_id
|
| 217 |
+
self.track_confidence[track.track_id].append(best_score)
|
| 218 |
+
self.recent_matches[best_dog_id] = self.current_frame
|
| 219 |
+
|
| 220 |
+
return best_dog_id, best_score
|
| 221 |
+
else:
|
| 222 |
+
# Score in ambiguous range - check if we should create new dog
|
| 223 |
+
second_best_score = sorted(match_details.values(), reverse=True)[1] if len(match_details) > 1 else 0
|
| 224 |
+
if best_score - second_best_score < 0.1:
|
| 225 |
+
# Too similar to multiple dogs - likely new dog
|
| 226 |
+
pass # Fall through to create new dog
|
| 227 |
+
|
| 228 |
+
# Register new dog
|
| 229 |
+
new_dog_id = self.next_dog_id
|
| 230 |
+
self.next_dog_id += 1
|
| 231 |
+
self.dog_database[new_dog_id] = [
|
| 232 |
+
DogFeatures(
|
| 233 |
+
features=features,
|
| 234 |
+
confidence=detection.confidence,
|
| 235 |
+
frame_num=self.current_frame
|
| 236 |
)
|
| 237 |
+
]
|
| 238 |
+
self.track_to_dog[track.track_id] = new_dog_id
|
| 239 |
+
self.track_confidence[track.track_id] = [1.0]
|
| 240 |
+
self.recent_matches[new_dog_id] = self.current_frame
|
| 241 |
+
|
| 242 |
+
return new_dog_id, 1.0
|
| 243 |
+
|
| 244 |
+
def _prune_features(self, dog_id: int):
|
| 245 |
+
"""Keep only best recent features to save memory"""
|
| 246 |
+
if dog_id not in self.dog_database:
|
| 247 |
+
return
|
| 248 |
+
|
| 249 |
+
features = self.dog_database[dog_id]
|
| 250 |
+
if len(features) > 15:
|
| 251 |
+
# Sort by confidence and recency
|
| 252 |
+
features.sort(key=lambda x: x.confidence + (0.001 * x.frame_num), reverse=True)
|
| 253 |
+
# Keep top 10
|
| 254 |
+
self.dog_database[dog_id] = features[:10]
|
| 255 |
|
| 256 |
def match_or_register_all(self, track) -> Dict:
|
| 257 |
"""Compatible interface"""
|
|
|
|
| 268 |
"""Reset all temporary data"""
|
| 269 |
self.dog_database.clear()
|
| 270 |
self.track_to_dog.clear()
|
| 271 |
+
self.track_confidence.clear()
|
| 272 |
+
self.recent_matches.clear()
|
| 273 |
self.next_dog_id = 1
|
| 274 |
+
self.current_frame = 0
|
| 275 |
|
| 276 |
def set_all_thresholds(self, threshold: float):
|
| 277 |
+
"""Set similarity thresholds adaptively"""
|
| 278 |
+
self.primary_threshold = max(0.3, min(0.9, threshold))
|
| 279 |
+
self.secondary_threshold = max(0.25, self.primary_threshold - 0.1)
|
| 280 |
+
self.new_dog_threshold = min(0.9, self.primary_threshold + 0.1)
|
| 281 |
|
| 282 |
def get_statistics(self) -> Dict:
|
| 283 |
"""Get statistics"""
|
|
|
|
| 285 |
'ResNet50': {
|
| 286 |
'total_dogs': self.next_dog_id - 1,
|
| 287 |
'dogs_in_database': len(self.dog_database),
|
| 288 |
+
'active_dogs': len([d for d, f in self.recent_matches.items()
|
| 289 |
+
if self.current_frame - f < 150]),
|
| 290 |
+
'avg_features_per_dog': np.mean([len(f) for f in self.dog_database.values()]) if self.dog_database else 0,
|
| 291 |
+
'threshold': self.primary_threshold
|
| 292 |
}
|
| 293 |
}
|
| 294 |
|