""" debug_wrapper.py - Debug Monitoring Module Injects debugging capabilities without modifying core modules """ import os import time import json import numpy as np import cv2 from collections import deque, Counter from pathlib import Path from typing import Any, Dict, List, Optional import traceback # Disable Gradio analytics (avoids pandas OptionError bug) try: import gradio as gr gr.analytics_enabled = False except Exception: pass # Create debug directory DEBUG_DIR = Path("debug_samples") DEBUG_DIR.mkdir(exist_ok=True) class DebugMonitor: """Centralized debug monitoring and logging""" def __init__(self, keep_last_logs: int = 200): self.keep_last_logs = keep_last_logs self.reset() def reset(self): """Reset all debug state""" self.start_time = time.time() self.frame_count = 0 self.counters = Counter() self.similarities = deque(maxlen=2000) self.recent_logs = deque(maxlen=self.keep_last_logs) self.bad_samples = [] self.match_records = [] self.live_stats = {} # Live statistics for display def log(self, msg: str, level: str = "INFO"): """Add log entry with timestamp""" ts = time.strftime("%H:%M:%S") entry = f"[{ts}] [{level}] {msg}" print(entry, flush=True) self.recent_logs.append(entry) def save_bad_sample(self, img_bgr: np.ndarray, similarity: float, dog_id: int, track_id: int) -> Optional[str]: """Save problematic detection sample""" try: idx = len(self.bad_samples) + 1 fname = DEBUG_DIR / f"bad_sample_{idx:04d}_sim{similarity:.2f}_dog{dog_id}.jpg" cv2.imwrite(str(fname), img_bgr) self.bad_samples.append({ 'file': str(fname), 'similarity': similarity, 'dog_id': dog_id, 'track_id': track_id, 'timestamp': time.time() }) self.log(f"Saved bad sample #{idx}: sim={similarity:.3f}, dog_id={dog_id}, track={track_id}", "WARNING") return str(fname) except Exception as e: self.log(f"Error saving bad sample: {e}", "ERROR") return None def update_live_stats(self): """Update live statistics for display""" total_matches = self.counters['reid_matches'] total_attempts = self.counters['reid_attempts'] or 1 self.live_stats = { 'frame': self.frame_count, 'dogs_detected': len(set(r['dog_id'] for r in self.match_records if r['dog_id'] > 0)), 'active_tracks': self.counters['active_tracks'], 'match_rate': total_matches / total_attempts, 'avg_similarity': np.mean(self.similarities) if self.similarities else 0.0, 'fps': self.frame_count / (time.time() - self.start_time + 1) } def get_debug_output(self, lines: int = 10) -> str: """Get recent log lines for UI display""" return "\n".join(list(self.recent_logs)[-lines:]) def get_debug_summary(self) -> str: """Get comprehensive debug summary""" c = self.counters total_matches = c['reid_matches'] total_attempts = c['reid_attempts'] or 1 match_rate = total_matches / total_attempts avg_sim = np.mean(self.similarities) if self.similarities else 0.0 elapsed = time.time() - self.start_time # Get unique dogs unique_dogs = len(set(r['dog_id'] for r in self.match_records if r['dog_id'] > 0)) summary = f"""📊 Debug Summary ━━━━━━━━━━━━━━━━━━━━━━ Frames: {self.frame_count} | Time: {elapsed:.1f}s | FPS: {self.frame_count/(elapsed+1):.1f} Detections: {c['detections']} | Tracks: {c['tracks_created']} | Confirmed: {c['tracks_confirmed']} Unique Dogs: {unique_dogs} | Active Tracks: {c['active_tracks']} ReID Attempts: {total_attempts} | Matches: {total_matches} ({match_rate:.1%}) Avg Similarity: {avg_sim:.3f} | Feature Fails: {c['feature_fail']} Bad Samples Saved: {len(self.bad_samples)}""" return summary def save_debug_report(self, filepath: str = "debug_report.json"): """Save comprehensive debug report""" try: report = { 'timestamp': time.strftime("%Y-%m-%d %H:%M:%S"), 'frames_processed': self.frame_count, 'elapsed_time': time.time() - self.start_time, 'counters': dict(self.counters), 'avg_similarity': float(np.mean(self.similarities)) if self.similarities else 0.0, 'similarity_distribution': { 'min': float(min(self.similarities)) if self.similarities else 0, 'max': float(max(self.similarities)) if self.similarities else 0, 'percentiles': { '25%': float(np.percentile(list(self.similarities), 25)) if self.similarities else 0, '50%': float(np.percentile(list(self.similarities), 50)) if self.similarities else 0, '75%': float(np.percentile(list(self.similarities), 75)) if self.similarities else 0, '90%': float(np.percentile(list(self.similarities), 90)) if self.similarities else 0 } }, 'bad_samples': self.bad_samples[:20], 'match_records_last': self.match_records[-50:] } with open(filepath, "w") as f: json.dump(report, f, indent=2, default=str) self.log(f"Saved debug report to {filepath}", "INFO") except Exception as e: self.log(f"Failed to save debug report: {e}", "ERROR") def add_debugging(app: Any) -> Any: """ Inject debug monitoring into DogMonitoringApp Args: app: DogMonitoringApp instance Returns: Modified app with debug capabilities """ # Create debug monitor app.debug_monitor = DebugMonitor() # ============== Wrap detector.detect ============== if hasattr(app, "detector") and hasattr(app.detector, "detect"): original_detect = app.detector.detect def wrapped_detect(frame, *args, **kwargs): try: detections = original_detect(frame, *args, **kwargs) n = len(detections) if detections else 0 app.debug_monitor.counters['detections'] += n if n > 0: app.debug_monitor.log(f"Detected {n} dogs in frame {app.debug_monitor.frame_count}", "DEBUG") return detections except Exception as e: app.debug_monitor.log(f"Detection error: {e}", "ERROR") return [] app.detector.detect = wrapped_detect app.debug_monitor.log("Injected debug wrapper for detector.detect()") # ============== Wrap tracker.update ============== if hasattr(app, "tracker") and hasattr(app.tracker, "update"): original_tracker_update = app.tracker.update def wrapped_tracker_update(detections, *args, **kwargs): try: before_ids = set([t.track_id for t in getattr(app.tracker, "tracks", [])]) tracks = original_tracker_update(detections, *args, **kwargs) after_ids = set([t.track_id for t in getattr(app.tracker, "tracks", [])]) new_ids = after_ids - before_ids app.debug_monitor.counters['tracks_created'] += len(new_ids) app.debug_monitor.counters['tracks_confirmed'] += len(tracks) app.debug_monitor.counters['active_tracks'] = len(tracks) if new_ids: app.debug_monitor.log(f"Created {len(new_ids)} new tracks", "DEBUG") return tracks except Exception as e: app.debug_monitor.log(f"Tracker error: {e}", "ERROR") return [] app.tracker.update = wrapped_tracker_update app.debug_monitor.log("Injected debug wrapper for tracker.update()") # ============== Wrap reid.match_or_register ============== if hasattr(app, "reid") and hasattr(app.reid, "match_or_register"): original_match = app.reid.match_or_register def wrapped_match(track, *args, **kwargs): app.debug_monitor.counters['reid_attempts'] += 1 try: dog_id, confidence = original_match(track, *args, **kwargs) dog_id = int(dog_id) sim = float(confidence) # Record similarity app.debug_monitor.similarities.append(sim) app.debug_monitor.match_records.append({ 'sim': sim, 'dog_id': dog_id, 'track_id': getattr(track, 'track_id', None), 'frame': app.debug_monitor.frame_count }) # Check for problematic matches threshold = getattr(app.reid, 'similarity_threshold', getattr(app, 'reid_threshold', 0.7)) # Save bad samples (very low similarity) if sim < (threshold - 0.2) and track.detections: latest_crop = None for det in reversed(track.detections): if det.image_crop is not None: latest_crop = det.image_crop break if latest_crop is not None: app.debug_monitor.save_bad_sample( latest_crop, sim, dog_id, getattr(track, 'track_id', 0) ) # Count match/miss if sim >= threshold: app.debug_monitor.counters['reid_matches'] += 1 else: app.debug_monitor.counters['reid_misses'] += 1 return dog_id, sim except Exception as e: app.debug_monitor.log(f"ReID error: {traceback.format_exc()}", "ERROR") app.debug_monitor.counters['feature_fail'] += 1 return 0, 0.0 app.reid.match_or_register = wrapped_match app.debug_monitor.log("Injected debug wrapper for reid.match_or_register()") # ============== Wrap main process_video ============== if hasattr(app, "process_video"): original_process_video = app.process_video def wrapped_process_video(video_path: str, progress=None): # Reset debug state app.debug_monitor.reset() app.debug_monitor.log(f"Starting video processing: {video_path}") # Wrap progress callback to count frames if progress: original_progress = progress def wrapped_progress(val, desc=None): app.debug_monitor.frame_count = int(val * 100) # Approximate frame count app.debug_monitor.update_live_stats() return original_progress(val, desc) progress = wrapped_progress try: result = original_process_video(video_path, progress) # Save debug report app.debug_monitor.save_debug_report() app.debug_monitor.log("Video processing completed successfully") return result except Exception as e: app.debug_monitor.log(f"Process video error: {traceback.format_exc()}", "ERROR") raise app.process_video = wrapped_process_video app.debug_monitor.log("Injected debug wrapper for process_video()") # ============== Add convenience methods ============== app.get_debug_output = lambda lines=10: app.debug_monitor.get_debug_output(lines) app.get_debug_summary = lambda: app.debug_monitor.get_debug_summary() app.get_live_stats = lambda: app.debug_monitor.live_stats app.debug_monitor.log("✓ Debug monitoring system initialized") return app