import gradio as gr import json import pandas as pd from urllib.request import urlopen from urllib.error import URLError import re from datetime import datetime # Constants CITATION_BUTTON_TEXT = r"""@misc{2023opencompass, title={OpenCompass: A Universal Evaluation Platform for Foundation Models}, author={OpenCompass Contributors}, howpublished = {\url{https://github.com/open-compass/opencompass}}, year={2023} }""" CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results" # 开发环境 # DATA_URL_BASE = "http://opencompass.oss-cn-shanghai.aliyuncs.com/dev-assets/research-rank/research-data.REALTIME." # DATA_URL_BASE = "./s1test" # 生产环境 DATA_URL_BASE = "http://opencompass.oss-cn-shanghai.aliyuncs.com/assets/research-rank/research-data.REALTIME." def find_latest_data_url(): """Find the latest available data URL by trying different dates.""" today = datetime.now() for i in range(365): date = today.replace(day=today.day - i) date_str = date.strftime("%Y%m%d") url = f"{DATA_URL_BASE}{date_str}.json" try: urlopen(url) return url, date_str except URLError: continue breakpoint() return None, None def get_latest_data(): """Get latest data URL and update time""" data_url, update_time = find_latest_data_url() if not data_url: raise Exception("Could not find valid data URL") formatted_update_time = datetime.strptime(update_time, "%Y%m%d").strftime("%Y-%m-%d") return data_url, formatted_update_time def get_leaderboard_title(update_time): return f"# Supported Datasets List (Last Updated: {update_time})" MAIN_DESCRIPTION = """## The List of Datasets Supported by OpenCompass Testing line. - All configurations and datsets can be found in [**OpenCompass**: A Toolkit for Evaluation of LLMs](https://github.com/open-compass/opencompass)🏆. """ def load_data(data_url): response = urlopen(data_url) with open('s1.json','r',encoding='utf8') as f: data = json.load(f) return data def build_main_table(data): df = pd.DataFrame(data).transpose() columns = { 'name': 'Name', 'category': 'Category', 'article': 'Article Address', } df = df[list(columns.keys())].rename(columns=columns) return df DATA_CATEGORY = ['med', 'law', 'code'] def filter_table1(df, data_category): filtered_df = df.copy() if data_category: mask = pd.Series(False, index=filtered_df.index) for category in data_category: mask |= filtered_df['Category'] == category filtered_df = filtered_df[mask] return filtered_df def calculate_column_widths(df): column_widths = [] for column in df.columns: header_length = len(str(column)) max_content_length = df[column].astype(str).map(len).max() width = max(header_length * 10, max_content_length * 8) + 20 width = max(160, min(400, width)) column_widths.append(width) return column_widths class DataState: def __init__(self): self.current_df = None data_state = DataState() def create_interface(): empty_df = pd.DataFrame(columns=[ 'Name', 'Category', 'Article Address' ]) def load_initial_data(): try: data_url, update_time = get_latest_data() data = load_data(data_url) new_df = build_main_table(data) data_state.current_df = new_df filtered_df = filter_table1(new_df, DATA_CATEGORY) return get_leaderboard_title(update_time), filtered_df.sort_values("Name", ascending=True) except Exception as e: print(f"Error loading initial data: {e}") return "# Supported Datasets List (Error loading data)", empty_df def refresh_data(): try: data_url, update_time = get_latest_data() data = load_data(data_url) new_df = build_main_table(data) data_state.current_df = new_df filtered_df = filter_table1(new_df, DATA_CATEGORY) return get_leaderboard_title(update_time), filtered_df.sort_values("Name", ascending=True) except Exception as e: print(f"Error refreshing data: {e}") return None, None def update_table(category): if data_state.current_df is None: return empty_df filtered_df = filter_table1(data_state.current_df, category) return filtered_df.sort_values("Name", ascending=True) initial_title, initial_data = load_initial_data() with gr.Blocks() as demo: title_comp = gr.Markdown(initial_title) with gr.Tabs() as tabs: with gr.TabItem("Dataset List", elem_id='main'): gr.Markdown(MAIN_DESCRIPTION) with gr.Row(): with gr.Column(): category_filter = gr.CheckboxGroup( choices=DATA_CATEGORY, value=DATA_CATEGORY, label='Category', interactive=True, ) with gr.Column(): table = gr.DataFrame( value=initial_data, interactive=False, wrap=False, column_widths=calculate_column_widths(initial_data), ) refresh_button = gr.Button("Refresh Data") def refresh_and_update(): title, data = refresh_data() return title, data refresh_button.click( fn=refresh_and_update, outputs=[title_comp, table], ) category_filter.change( fn=update_table, inputs=[category_filter], outputs=table, ) with gr.Row(): with gr.Accordion("Citation", open=False): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, elem_id='citation-button', lines=6, # 增加行数 max_lines=8, # 设置最大行数 show_copy_button=True # 添加复制按钮使其更方便使用 ) return demo if __name__ == '__main__': demo = create_interface() demo.queue() demo.launch(server_name='0.0.0.0')