Spaces:
Runtime error
Runtime error
File size: 13,085 Bytes
721b535 59a7918 721b535 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
from PIL import Image
import numpy as np
import base64
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
from flask import Flask, request, jsonify
from flask_cors import CORS
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import google.generativeai as genai
from langchain_core.messages import HumanMessage
from langchain_google_genai import ChatGoogleGenerativeAI
from reportlab.lib.utils import ImageReader
from flask import send_file, jsonify, request
from reportlab.pdfgen import canvas
from reportlab.lib.pagesizes import A4
from reportlab.lib.units import inch
import io, torch, os
os.environ["MPLCONFIGDIR"] = "/tmp"
from reportlab.lib import colors
from datetime import datetime
os.environ['GOOGLE_API_KEY'] = "AIzaSyCv2dNQMCD3-9s3E5Th7bDy4ko0dyucRCc"
genai.configure(api_key=os.environ['GOOGLE_API_KEY'])
# Setup
app = Flask(__name__)
CORS(app)
# Initialize device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load model and processor
processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-tiny-ade-semantic")
model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-tiny-ade-semantic")
# model.load_state_dict(torch.load(r"E:\FYP Work\FYP_code\backend\mask2former-ade-(splicing1_2).pth", map_location=device))
model.load_state_dict(torch.load(r"mask2former-ade-(splicing1_2).pth", map_location=device))
model = model.to(device)
model.eval()
# ========== Flask routes ==========
@app.route('/')
def home():
return "Backend is running!"
@app.route('/predict', methods=['POST'])
def predict():
if 'image' not in request.files:
return jsonify({"error": "No image uploaded"}), 400
try:
file = request.files['image']
image = Image.open(io.BytesIO(file.read()))
# Convert to RGB if needed
if image.mode != 'RGB':
image = image.convert('RGB')
# Encode original image to base64
original_image_buffer = io.BytesIO()
image.save(original_image_buffer, format="PNG")
original_image_base64 = base64.b64encode(original_image_buffer.getvalue()).decode("utf-8")
# Process image using Mask2Former processor
inputs = processor(images=image, return_tensors="pt").to(device)
# Predict
with torch.no_grad():
outputs = model(**inputs)
# Process outputs
predicted_segmentation = processor.post_process_semantic_segmentation(
outputs, target_sizes=[image.size[::-1]]
)[0]
# Convert to numpy array for visualization
segmentation_mask = predicted_segmentation.cpu().numpy()
# ========== Create visualizations ==========
# Create side-by-side plot
fig, axes = plt.subplots(1, 2, figsize=(10, 5))
axes[0].imshow(image)
axes[0].set_title("Input Image")
axes[1].imshow(segmentation_mask)
axes[1].set_title("Prediction")
for ax in axes:
ax.axis("off")
plt.tight_layout()
# Save visualization to buffer
buf = io.BytesIO()
plt.savefig(buf, format="png", bbox_inches='tight', pad_inches=0)
buf.seek(0)
visualization_base64 = base64.b64encode(buf.read()).decode('utf-8')
plt.close()
# ========== Encode mask separately ==========
# Normalize mask to 0-255 range
mask_normalized = (segmentation_mask - segmentation_mask.min()) * (255.0 / (segmentation_mask.max() - segmentation_mask.min()))
mask_image = Image.fromarray(mask_normalized.astype(np.uint8))
mask_buffer = io.BytesIO()
mask_image.save(mask_buffer, format="PNG")
mask_base64 = base64.b64encode(mask_buffer.getvalue()).decode("utf-8")
#VLM code
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash")
# Create multimodal message
message = HumanMessage(
content=[
{
"type": "text",
#"text": "Please explain briefly where the manipulation has been occured, don't use mask"
"text": " This is an image and its predicted binary mask showing manipulated regions in white. "
"Please explain briefly in 2-3 lines where the manipulation occurred and what might have been altered."
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{original_image_base64}"
},
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/png;base64,{mask_base64}"
},
},
]
)
# Get response
response = llm.invoke([message])
print(response.content)
return jsonify({
"original_image": original_image_base64,
"mask": mask_base64,
"visualization": visualization_base64,
"message": response.content
})
except Exception as e:
return jsonify({"error": str(e)}), 500
import json
from threading import Lock
counter_file = "counter.json"
counter_lock = Lock()
def get_case_id():
today = datetime.now().strftime('%Y%m%d')
with counter_lock:
if os.path.exists(counter_file):
with open(counter_file, "r") as f:
data = json.load(f)
else:
data = {}
count = data.get(today, 0) + 1
data[today] = count
with open(counter_file, "w") as f:
json.dump(data, f)
return f"DFD-{today}-{count:03d}"
@app.route('/download-report', methods=['POST'])
def download_report():
try:
file = request.files['image']
image = Image.open(io.BytesIO(file.read())).convert("RGB")
# === Process Image ===
inputs = processor(images=image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**inputs)
predicted_segmentation = processor.post_process_semantic_segmentation(
outputs, target_sizes=[image.size[::-1]]
)[0]
segmentation_mask = predicted_segmentation.cpu().numpy()
# === Create Mask Image ===
mask_normalized = (segmentation_mask - segmentation_mask.min()) * (255.0 / (segmentation_mask.max() - segmentation_mask.min()))
mask_image = Image.fromarray(mask_normalized.astype(np.uint8)).convert("L")
# === Prepare Images ===
image.save("temp_input.png")
mask_image.save("temp_mask.png")
# === Get LLM Analysis ===
# Encode images for LLM
original_buffer = io.BytesIO()
image.save(original_buffer, format="PNG")
original_base64 = base64.b64encode(original_buffer.getvalue()).decode("utf-8")
mask_buffer = io.BytesIO()
mask_image.save(mask_buffer, format="PNG")
mask_base64 = base64.b64encode(mask_buffer.getvalue()).decode("utf-8")
# Get professional analysis from Gemini
llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash")
message = HumanMessage(
content=[
{
"type": "text",
"text": " This is an image and its predicted binary mask showing manipulated regions in white. "
"Please explain briefly where the manipulation occurred and what might have been altered."
},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{original_base64}"},
},
{
"type": "image_url",
"image_url": {"url": f"data:image/png;base64,{mask_base64}"},
},
]
)
llm_response = llm.invoke([message]).content
# === Generate PDF Report ===
buffer = io.BytesIO()
c = canvas.Canvas(buffer, pagesize=A4)
width, height = A4
# === Professional Report Design ===
# Light blue background
c.setFillColorRGB(0.96, 0.96, 1)
c.rect(0, 0, width, height, fill=1, stroke=0)
# Dark blue header
c.setFillColorRGB(0, 0.2, 0.4)
c.rect(0, height-80, width, 80, fill=1, stroke=0)
# Title
c.setFillColorRGB(1, 1, 1)
c.setFont("Helvetica-Bold", 18)
c.drawCentredString(width/2, height-50, "DIGITAL IMAGE AUTHENTICITY REPORT")
c.setFont("Helvetica", 10)
c.drawCentredString(width/2, height-70, "Forensic Analysis Report")
# Metadata
c.setFillColorRGB(0, 0, 0)
c.setFont("Helvetica", 9)
c.drawString(40, height-100, f"Report Date: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
case_id = get_case_id()
c.drawString(width-200, height-100, f"Case ID: {case_id}")
# Divider
c.setStrokeColorRGB(0, 0.4, 0.6)
c.setLineWidth(1)
c.line(40, height-110, width-40, height-110)
# === Analysis Summary ===
c.setFillColorRGB(0, 0.3, 0.6)
c.setFont("Helvetica-Bold", 12)
c.drawString(40, height-140, "EXECUTIVE SUMMARY")
c.setFillColorRGB(0, 0, 0)
c.setFont("Helvetica", 10)
summary_text = [
"This report presents forensic analysis of potential digital manipulations",
"using state-of-the-art AI detection models. Key findings are summarized below."
]
text_object = c.beginText(40, height-160)
text_object.setFont("Helvetica", 10)
text_object.setLeading(14)
for line in summary_text:
text_object.textLine(line)
c.drawText(text_object)
# === Image Evidence ===
img_y = height-420
img_width = 220
img_height = 220
# Original Image
c.drawImage("temp_input.png", 40, img_y, width=img_width, height=img_height)
c.setFillColorRGB(0, 0.3, 0.6)
c.setFont("Helvetica-Bold", 10)
c.drawString(40, img_y-20, "ORIGINAL IMAGE")
# Detection Result
c.drawImage("temp_mask.png", width-260, img_y, width=img_width, height=img_height)
c.drawString(width-260, img_y-20, "DETECTION HEATMAP")
# === AI Analysis Section ===
c.setFillColorRGB(0, 0.3, 0.6)
c.setFont("Helvetica-Bold", 12)
c.drawString(40, img_y-50, "AI FORENSIC ANALYSIS")
# Format LLM response with proper line breaks
from textwrap import wrap
analysis_lines = []
for paragraph in llm_response.split('\n'):
analysis_lines.extend(wrap(paragraph, width=90))
text_object = c.beginText(40, img_y-70)
text_object.setFont("Helvetica", 10)
text_object.setLeading(14)
# Show first 10 lines (adjust based on space)
for line in analysis_lines[:10]:
text_object.textLine(line)
if len(analysis_lines) > 10:
text_object.textLine("\n[Full analysis available in digital report]")
c.drawText(text_object)
# === Technical Details ===
c.setFillColorRGB(0, 0.3, 0.6)
c.setFont("Helvetica-Bold", 12)
c.drawString(40, img_y-180, "TECHNICAL SPECIFICATIONS")
c.setFillColorRGB(0, 0, 0)
c.setFont("Helvetica", 10)
tech_details = [
f"Analysis Model: Mask2Former-Swin (ADE20K Fine-tuned)",
#f"Detection Threshold: {segmentation_mask.max():.2f} confidence",
f"Processing Date: {datetime.now().strftime('%Y-%m-%d')}",
"Report Version: 1.1"
]
text_object = c.beginText(40, img_y-200)
text_object.setFont("Helvetica", 10)
text_object.setLeading(14)
for line in tech_details:
text_object.textLine(line)
c.drawText(text_object)
# === Footer ===
c.setFillColorRGB(0, 0.2, 0.4)
c.rect(0, 40, width, 40, fill=1, stroke=0)
c.setFillColorRGB(1, 1, 1)
c.setFont("Helvetica", 8)
c.drawCentredString(width/2, 65, "This report was generated by AI forensic tools and should be verified by human experts")
c.drawCentredString(width/2, 55, "Sukkur IBA University | Digital Forensics Lab | © 2024 Deepfake Research Project")
c.save()
buffer.seek(0)
# Cleanup
os.remove("temp_input.png")
os.remove("temp_mask.png")
return send_file(
buffer,
mimetype='application/pdf',
as_attachment=True,
download_name=f"forensic_report_{datetime.now().strftime('%Y%m%d_%H%M')}.pdf"
)
except Exception as e:
return jsonify({"error": str(e)}), 500
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860, debug=False) |