from sklearn.datasets import load_iris import joblib import os from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression def main(): # Load the iris dataset iris = load_iris() X = iris.data[:,0].reshape(-1,1) # single feature y = iris.target # Split the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = LogisticRegression() model.fit(X_train, y_train) # Save the model os.makedirs('model', exist_ok=True) joblib.dump(model, 'model/model.joblib') if __name__ == '__main__': main()