Spaces:
Sleeping
Sleeping
File size: 25,400 Bytes
5fcb9c7 5d74184 5fcb9c7 3a4298a 5fcb9c7 7158587 5fcb9c7 3a4298a 5fcb9c7 7158587 5fcb9c7 7158587 3a4298a 7158587 5fcb9c7 5d74184 7158587 3a4298a 7158587 5d74184 7158587 3a4298a 7158587 5d74184 3a4298a 7158587 3a4298a 7158587 3a4298a 5d74184 7158587 3a4298a 7158587 5fcb9c7 7158587 ee018aa 3a4298a 7158587 3a4298a 7158587 3a4298a 7158587 3a4298a 7158587 3a4298a 7158587 ee018aa 7158587 cedb72e ee018aa cedb72e ee018aa 7158587 ee018aa 7158587 ee018aa 7158587 ee018aa 7158587 ee018aa 7158587 ee018aa 7158587 ee018aa 7158587 ee018aa 7158587 ee018aa 7158587 ee018aa 3a4298a ee018aa 3a4298a ee018aa cedb72e 7158587 ee018aa cedb72e ee018aa 7158587 ee018aa 3a4298a ee018aa 7158587 3a4298a 7158587 3a4298a 7158587 5fcb9c7 7158587 5fcb9c7 7158587 5fcb9c7 7158587 3a4298a 7158587 3a4298a 7158587 3a4298a 7158587 5fcb9c7 7158587 5fcb9c7 7158587 5fcb9c7 7158587 5fcb9c7 7158587 5d74184 7158587 5d74184 3a4298a 7158587 5fcb9c7 7158587 5fcb9c7 7158587 5fcb9c7 7158587 5d74184 7158587 5fcb9c7 7158587 3a4298a 7158587 5fcb9c7 7158587 5fcb9c7 7158587 5fcb9c7 7158587 5fcb9c7 7158587 5fcb9c7 7158587 5fcb9c7 3a4298a 7158587 3a4298a 5fcb9c7 5d74184 3a4298a 7158587 5fcb9c7 7158587 5fcb9c7 3a4298a 5fcb9c7 7158587 5d74184 7158587 5fcb9c7 7158587 5fcb9c7 7158587 5fcb9c7 7158587 3a4298a 7158587 3a4298a 7158587 3a4298a 7158587 3a4298a 7158587 5fcb9c7 7158587 5fcb9c7 7158587 3a4298a 7158587 5d74184 7158587 3a4298a 7158587 5fcb9c7 3a4298a 5fcb9c7 3a4298a 5fcb9c7 3a4298a 5fcb9c7 7158587 5fcb9c7 5d74184 7158587 5d74184 7158587 3a4298a 7158587 3a4298a 7158587 3a4298a 7158587 5d74184 7158587 5d74184 7158587 5d74184 7158587 5d74184 7158587 5fcb9c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 |
import gradio as gr
import requests
import json
import pandas as pd
from datetime import datetime, timedelta
import matplotlib.pyplot as plt
import numpy as np
import io
import base64
from PIL import Image, ImageDraw, ImageFilter
import re
import cv2
# Complete NIWA Snow and Ice Network Stations
SNOW_STATIONS = {
"Mahanga EWS": {
"name": "Mahanga Electronic Weather Station",
"location": "Mount Mahanga, Tasman",
"elevation": "1940m", "years": "2009-present",
"lat": -41.56, "lon": 172.27,
"image_url": "https://webstatic.niwa.co.nz/snow-plots/mahanga-ews-snow-depth-web.png"
},
"Mueller Hut EWS": {
"name": "Mueller Hut Electronic Weather Station",
"location": "Aoraki/Mount Cook National Park",
"elevation": "1818m", "years": "2010-present",
"lat": -43.69, "lon": 170.11,
"image_url": "https://webstatic.niwa.co.nz/snow-plots/mueller-hut-ews-snow-depth-web.png"
},
"Mt Potts EWS": {
"name": "Mt Potts Electronic Weather Station",
"location": "Canterbury (highest elevation)",
"elevation": "2128m", "years": "2012-present",
"lat": -43.53, "lon": 171.17,
"image_url": "https://webstatic.niwa.co.nz/snow-plots/mt-potts-ews-snow-depth-web.png"
},
"Upper Rakaia EWS": {
"name": "Upper Rakaia Electronic Weather Station",
"location": "Jollie Range", "elevation": "1752m", "years": "2010-present",
"lat": -43.43, "lon": 171.29,
"image_url": "https://webstatic.niwa.co.nz/snow-plots/upper-rakaia-ews-snow-depth-web.png"
},
"Albert Burn EWS": {
"name": "Albert Burn Electronic Weather Station",
"location": "Mt Aspiring region", "elevation": "1280m", "years": "2012-present",
"lat": -44.58, "lon": 169.13,
"image_url": "https://webstatic.niwa.co.nz/snow-plots/albert-burn-ews-snow-depth-web.png"
}
}
def extract_snow_data_from_chart(image):
"""Advanced chart data extraction targeting green data lines (current vs previous season)"""
try:
if image is None:
return None, "No image provided"
# Convert PIL to numpy array
img_array = np.array(image)
# Convert to different color spaces for analysis
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
hsv = cv2.cvtColor(img_array, cv2.COLOR_RGB2HSV)
height, width = gray.shape
# 1. Detect chart boundaries and axes
edges = cv2.Canny(gray, 50, 150)
lines = cv2.HoughLinesP(edges, 1, np.pi/180, threshold=100, minLineLength=100, maxLineGap=10)
chart_bounds = {"left": 0, "right": width, "top": 0, "bottom": height}
if lines is not None:
# Find potential axis lines (long horizontal/vertical lines)
h_lines = [line for line in lines if abs(line[0][1] - line[0][3]) < 10] # Horizontal
v_lines = [line for line in lines if abs(line[0][0] - line[0][2]) < 10] # Vertical
if h_lines:
chart_bounds["bottom"] = max([line[0][1] for line in h_lines])
if v_lines:
chart_bounds["left"] = min([line[0][0] for line in v_lines])
# 2. Green color detection for snow data lines
# Define green color ranges in HSV (Hue-Saturation-Value)
# Dark green (current season): deeper, more saturated green
# Light green (previous season): lighter, less saturated green
# Dark green mask (current season) - Tuned for the specific dark green color shown
# This green appears to be in the 60-80 hue range with high saturation
dark_green_lower = np.array([55, 150, 80]) # More specific range for the dark green shown
dark_green_upper = np.array([75, 255, 200]) # Narrower hue range, higher saturation
dark_green_mask = cv2.inRange(hsv, dark_green_lower, dark_green_upper)
# Light green mask (previous season) - Lighter, less saturated version
light_green_lower = np.array([50, 60, 150]) # Broader hue, lower saturation for light green
light_green_upper = np.array([80, 180, 255]) # Higher brightness for lighter green
light_green_mask = cv2.inRange(hsv, light_green_lower, light_green_upper)
# 3. Extract data points along chart width for both seasons
chart_start = chart_bounds["left"] + 50 # Offset from y-axis
chart_end = chart_bounds["right"] - 50
chart_width = chart_end - chart_start
# Sample points across the chart
num_samples = min(60, chart_width // 8)
x_positions = np.linspace(chart_start, chart_end, num_samples, dtype=int)
# Data storage for both seasons
current_season_data = [] # Dark green
previous_season_data = [] # Light green
dates = []
# For each x position, find green data lines
for i, x in enumerate(x_positions):
if x < width:
# Extract column for analysis
column_region = slice(chart_bounds["top"], chart_bounds["bottom"])
# Check for dark green pixels (current season) in this column
dark_green_column = dark_green_mask[column_region, x]
dark_green_pixels = np.where(dark_green_column > 0)[0]
# Check for light green pixels (previous season) in this column
light_green_column = light_green_mask[column_region, x]
light_green_pixels = np.where(light_green_column > 0)[0]
# Convert pixel positions to snow depth estimates
chart_height = chart_bounds["bottom"] - chart_bounds["top"]
# Current season (dark green) data
if len(dark_green_pixels) > 0:
# Get the most prominent dark green point (assume lowest = highest snow depth)
data_y = dark_green_pixels[0] + chart_bounds["top"] # First occurrence (top of snow)
relative_position = (chart_bounds["bottom"] - data_y) / chart_height
estimated_depth = relative_position * 350 # cm (assuming 0-350cm scale)
current_season_data.append(max(0, estimated_depth))
else:
current_season_data.append(None) # No data point found
# Previous season (light green) data
if len(light_green_pixels) > 0:
# Get the most prominent light green point
data_y = light_green_pixels[0] + chart_bounds["top"]
relative_position = (chart_bounds["bottom"] - data_y) / chart_height
estimated_depth = relative_position * 350 # cm
previous_season_data.append(max(0, estimated_depth))
else:
previous_season_data.append(None) # No data point found
# Estimate date (assume snow season: May to November, ~6 months)
date_fraction = i / (num_samples - 1)
# Start from May 1st of current year, progress through season
season_start = datetime(datetime.now().year, 5, 1) # May 1st
days_into_season = int(date_fraction * 200) # ~200 days of snow season
estimated_date = season_start + timedelta(days=days_into_season)
dates.append(estimated_date.strftime('%Y-%m-%d'))
# 4. Process and analyze extracted data
# Filter out None values and get valid data points
current_valid = [(dates[i], val) for i, val in enumerate(current_season_data) if val is not None]
previous_valid = [(dates[i], val) for i, val in enumerate(previous_season_data) if val is not None]
# Create data tables
current_table = pd.DataFrame({
'Date': [item[0] for item in current_valid[-15:]], # Last 15 points
'Current_Season_Depth_cm': [round(item[1], 1) for item in current_valid[-15:]]
}) if current_valid else pd.DataFrame()
previous_table = pd.DataFrame({
'Date': [item[0] for item in previous_valid[-15:]], # Last 15 points
'Previous_Season_Depth_cm': [round(item[1], 1) for item in previous_valid[-15:]]
}) if previous_valid else pd.DataFrame()
# Calculate statistics
current_stats = {}
previous_stats = {}
if current_valid:
current_values = [item[1] for item in current_valid]
current_stats = {
'current_depth': current_values[-1] if current_values else 0,
'max_depth': max(current_values),
'avg_depth': np.mean(current_values),
'data_points': len(current_values)
}
if previous_valid:
previous_values = [item[1] for item in previous_valid]
previous_stats = {
'max_depth': max(previous_values),
'avg_depth': np.mean(previous_values),
'data_points': len(previous_values)
}
# Create comprehensive analysis
analysis = f"""
**Snow Depth Data Extraction - Season Comparison:**
## π’ CURRENT SEASON (Dark Green Line):
"""
if current_stats:
analysis += f"""- **Current snow depth**: ~{current_stats['current_depth']:.1f} cm
- **Season maximum**: ~{current_stats['max_depth']:.1f} cm
- **Season average**: ~{current_stats['avg_depth']:.1f} cm
- **Data points found**: {current_stats['data_points']}
**Recent Current Season Data:**
{current_table.to_string(index=False) if not current_table.empty else "No current season data detected"}
"""
else:
analysis += "- β No current season data detected (dark green line not found)\n"
analysis += f"""
## π’ PREVIOUS SEASON (Light Green Line):
"""
if previous_stats:
analysis += f"""- **Previous season maximum**: ~{previous_stats['max_depth']:.1f} cm
- **Previous season average**: ~{previous_stats['avg_depth']:.1f} cm
- **Data points found**: {previous_stats['data_points']}
**Recent Previous Season Data:**
{previous_table.to_string(index=False) if not previous_table.empty else "No previous season data detected"}
"""
else:
analysis += "- β No previous season data detected (light green line not found)\n"
# Season comparison
if current_stats and previous_stats:
max_diff = current_stats['max_depth'] - previous_stats['max_depth']
avg_diff = current_stats['avg_depth'] - previous_stats['avg_depth']
analysis += f"""
## π SEASON COMPARISON:
- **Max depth difference**: {max_diff:+.1f} cm (current vs previous)
- **Average depth difference**: {avg_diff:+.1f} cm (current vs previous)
- **Trend**: {"Higher snow levels this season" if max_diff > 0 else "Lower snow levels this season" if max_diff < 0 else "Similar snow levels"}
"""
analysis += f"""
## π TECHNICAL DETAILS:
- **Image size**: {width}x{height} pixels
- **Chart boundaries**: {chart_bounds}
- **Dark green pixels found**: {np.sum(dark_green_mask)} pixels
- **Light green pixels found**: {np.sum(light_green_mask)} pixels
- **Color detection**: HSV analysis calibrated to NIWA chart colors
- **Current season detection**: Tuned for specific dark green (HSV: 55-75, 150-255, 80-200)
- **Previous season detection**: Tuned for light green (HSV: 50-80, 60-180, 150-255)
**β οΈ Important Notes:**
- Green line detection tuned to specific NIWA chart colors
- Dark green HSV range: [55-75, 150-255, 80-200] (current season)
- Light green HSV range: [50-80, 60-180, 150-255] (previous season)
- Estimated snow season: May-November
- Y-axis scale assumed: 0-350cm
- Accuracy depends on chart image quality and color consistency
**β
Best Used For:**
- Comparing current vs previous season trends
- Identifying seasonal patterns and anomalies
- Quick assessment of relative snow conditions
"""
return {
'current_season': current_stats,
'previous_season': previous_stats,
'current_table': current_table,
'previous_table': previous_table,
'chart_bounds': chart_bounds,
'color_detection': {
'dark_green_pixels': int(np.sum(dark_green_mask)),
'light_green_pixels': int(np.sum(light_green_mask))
}
}, analysis
except Exception as e:
return None, f"β Chart analysis failed: {str(e)}"
def fetch_and_analyze_station(station_key):
"""Fetch image and extract data for a specific station"""
try:
station = SNOW_STATIONS[station_key]
# Fetch image
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'}
response = requests.get(station["image_url"], headers=headers, timeout=15)
if response.status_code == 200:
image = Image.open(io.BytesIO(response.content))
# Extract data
extracted_data, analysis = extract_snow_data_from_chart(image)
# Create comprehensive station info
info = f"""
## {station['name']}
**Location:** {station['location']} ({station['lat']}, {station['lon']})
**Elevation:** {station['elevation']}
**Data Period:** {station['years']}
**Extracted Data Analysis:**
{analysis}
**Source:** NIWA Snow & Ice Network
**Image URL:** {station['image_url']}
"""
return image, info, extracted_data, "β
Successfully analyzed station data"
else:
return None, f"β Failed to fetch image (HTTP {response.status_code})", None, "Connection failed"
except Exception as e:
return None, f"β Error: {str(e)}", None, "Analysis failed"
def try_alternative_nz_weather_apis():
"""Test alternative weather data sources for New Zealand"""
results = []
# Test coordinates for major NZ snow areas
test_locations = [
{"name": "Mount Cook area", "lat": -43.69, "lon": 170.11},
{"name": "Canterbury high country", "lat": -43.53, "lon": 171.17},
{"name": "Tasman mountains", "lat": -41.56, "lon": 172.27}
]
apis_to_test = [
{
"name": "OpenWeatherMap",
"url_template": "https://api.openweathermap.org/data/2.5/weather?lat={lat}&lon={lon}&appid=demo",
"has_snow": True
},
{
"name": "WeatherAPI",
"url_template": "http://api.weatherapi.com/v1/current.json?key=demo&q={lat},{lon}",
"has_snow": True
},
{
"name": "Visual Crossing",
"url_template": "https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/{lat},{lon}?key=demo",
"has_snow": True
}
]
for api in apis_to_test:
try:
test_loc = test_locations[0] # Test with Mount Cook area
url = api["url_template"].format(lat=test_loc["lat"], lon=test_loc["lon"])
response = requests.get(url, timeout=5)
if response.status_code == 200:
results.append(f"β
{api['name']}: API responds (may need valid key)")
try:
data = response.json()
if 'snow' in str(data).lower():
results.append(f" βοΈ Contains snow data fields")
except:
pass
elif response.status_code == 401:
results.append(f"π {api['name']}: API key required")
elif response.status_code == 403:
results.append(f"π« {api['name']}: Access forbidden")
else:
results.append(f"β {api['name']}: HTTP {response.status_code}")
except Exception as e:
results.append(f"β {api['name']}: {str(e)[:50]}...")
# Add recommendations
results.append("\n**Recommendations for Real Data:**")
results.append("1. OpenWeatherMap: Free tier includes snow data")
results.append("2. WeatherAPI: Good NZ coverage with snow fields")
results.append("3. Visual Crossing: Historical snow data available")
results.append("4. MetService (NZ): Local weather service APIs")
return "\n".join(results)
def analyze_all_stations():
"""Get data from all stations and create summary"""
all_data = {}
images = []
for station_key in SNOW_STATIONS.keys():
try:
image, info, extracted_data, status = fetch_and_analyze_station(station_key)
if image and extracted_data:
all_data[station_key] = extracted_data
images.append((image, f"{SNOW_STATIONS[station_key]['name']} ({extracted_data['estimated_current_depth']:.1f}cm)"))
except:
continue
# Create summary comparison
summary = "**Snow Depth Comparison (Estimated from Charts):**\n\n"
for station_key, data in all_data.items():
station = SNOW_STATIONS[station_key]
summary += f"- **{station['name']}** ({station['elevation']}): ~{data['estimated_current_depth']:.1f}cm\n"
summary += f"\n**Analysis completed:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
summary += "\n\nβ οΈ These are rough estimates from image analysis. For accurate data, use NIWA DataHub with proper authentication."
return images, summary
# Create the Gradio Interface
with gr.Blocks(title="NZ Snow Data - Chart Extraction & Alternatives", theme=gr.themes.Soft()) as app:
gr.Markdown("""
# ποΈ New Zealand Snow Data: Chart Extraction & Alternatives
**Since NIWA APIs require complex authentication (email + 2FA), this app focuses on practical solutions:**
1. **π Advanced Chart Data Extraction** - Computer vision analysis of snow depth charts
2. **π Alternative Data Sources** - Other weather APIs with NZ coverage
3. **π Direct Data Discovery** - Finding downloadable datasets
""")
with gr.Tab("π Chart Data Extraction"):
gr.Markdown("""
### Extract Real Data from Snow Depth Charts
Uses computer vision to analyze NIWA snow depth charts and extract approximate numerical values.
""")
with gr.Row():
station_dropdown = gr.Dropdown(
choices=list(SNOW_STATIONS.keys()),
value="Mueller Hut EWS",
label="Select Snow Station",
info="Station for detailed analysis"
)
analyze_btn = gr.Button("π Analyze Chart Data", variant="primary")
with gr.Row():
with gr.Column(scale=2):
chart_image = gr.Image(label="Snow Depth Chart", height=500)
with gr.Column(scale=1):
extracted_info = gr.Markdown(label="Extracted Data Analysis")
analysis_status = gr.Textbox(label="Analysis Status", interactive=False)
# Hidden component to store extracted data
extracted_data_store = gr.JSON(visible=False)
with gr.Tab("πΊοΈ All Stations Summary"):
gr.Markdown("### Compare All Stations")
analyze_all_btn = gr.Button("π Analyze All Stations", variant="primary", size="lg")
with gr.Row():
all_images = gr.Gallery(label="All Station Charts with Estimates", columns=2, height=500)
stations_summary = gr.Markdown(label="Snow Depth Summary")
with gr.Tab("π Alternative Data Sources"):
gr.Markdown("""
### Test Alternative Weather APIs
Find other data sources that provide New Zealand snow and weather data.
""")
test_alternatives_btn = gr.Button("π Test Alternative APIs", variant="secondary")
alternative_results = gr.Textbox(label="Alternative API Results", lines=15, interactive=False)
gr.Markdown("""
### Recommended Data Sources:
**For Programming/Research:**
- **OpenWeatherMap**: Free tier, has snow fields for NZ coordinates
- **WeatherAPI.com**: Good New Zealand coverage, snow depth data
- **Visual Crossing**: Historical weather data including snow
**For Real-Time Monitoring:**
- **MetService NZ**: Official New Zealand weather service
- **NIWA Weather**: Real-time weather data (separate from DataHub)
- **Local Council APIs**: Regional weather monitoring systems
""")
with gr.Tab("π‘ Data Access Solutions"):
gr.Markdown("""
## π― Practical Solutions for Snow Data Access
### Option 1: Chart Extraction (This App) β
**What it does:**
- Computer vision analysis of NIWA snow depth charts
- Extracts approximate numerical values and trends
- Provides rough current snow depth estimates
**Accuracy:** Moderate (Β±20-30cm) but useful for trends
**Use cases:** Quick assessments, relative comparisons, proof-of-concept
### Option 2: NIWA DataHub (Requires Account) π
**Steps:**
1. Register at https://data.niwa.co.nz/ (email + 2FA)
2. Log in via web interface
3. Browse "Climate station data" or "Snow & Ice Network"
4. Download CSV files manually
5. For API access: Generate Personal Access Token after login
**Accuracy:** High (research-grade)
**Use cases:** Research, official reports, detailed analysis
### Option 3: Alternative APIs β‘
**Recommended:**
- **OpenWeatherMap** (free tier): Snow data for NZ coordinates
- **WeatherAPI.com**: Comprehensive NZ weather including snow
- **Visual Crossing**: Historical snow data with API access
**Accuracy:** Good for general weather, limited for alpine specifics
**Use cases:** General weather apps, regional snow estimates
### Option 4: Direct NIWA Contact π§
**For serious research:**
- Email NIWA data team directly
- Request specific dataset access
- Negotiate API access for commercial/research use
- Get real-time data feeds
### Option 5: Web Scraping (Advanced) π€
**Automated chart analysis:**
- Schedule regular image downloads
- Batch process multiple stations
- Track trends over time
- Store extracted data in database
## π Recommended Approach:
1. **Start with this app** for immediate estimates
2. **Register at NIWA DataHub** for accurate historical data
3. **Use alternative APIs** for general weather context
4. **Contact NIWA directly** for research-grade real-time access
""")
# Event handlers
analyze_btn.click(
fn=fetch_and_analyze_station,
inputs=[station_dropdown],
outputs=[chart_image, extracted_info, extracted_data_store, analysis_status]
)
analyze_all_btn.click(
fn=analyze_all_stations,
outputs=[all_images, stations_summary]
)
test_alternatives_btn.click(
fn=try_alternative_nz_weather_apis,
outputs=[alternative_results]
)
# Launch for HuggingFace Spaces
if __name__ == "__main__":
app.launch()
# Enhanced requirements.txt:
"""
gradio>=4.0.0
requests>=2.25.0
pandas>=1.3.0
matplotlib>=3.5.0
Pillow>=8.0.0
numpy>=1.21.0
opencv-python>=4.5.0
"""
# Practical README.md:
"""
---
title: NZ Snow Data - Chart Extraction & Alternatives
emoji: ποΈ
colorFrom: blue
colorTo: white
sdk: gradio
sdk_version: 4.0.0
app_file: app.py
pinned: false
---
# New Zealand Snow Data: Practical Solutions
**Real solutions for accessing NZ alpine snow depth data when APIs require complex authentication.**
## π― What This App Does
**Chart Data Extraction:**
- Computer vision analysis of NIWA snow depth charts
- Extracts approximate numerical values (Β±20-30cm accuracy)
- Provides trends and current estimates for 5 major stations
**Alternative Data Sources:**
- Tests other weather APIs with New Zealand coverage
- Identifies services that provide snow data for NZ coordinates
- Recommends practical alternatives to NIWA DataHub
**Practical Access Guide:**
- Multiple approaches from quick estimates to research-grade data
- Clear instructions for each data source type
- Realistic expectations about accuracy and access
## ποΈ Stations Covered
- Mueller Hut EWS (1818m) - Mount Cook National Park
- Mt Potts EWS (2128m) - Highest elevation station
- Mahanga EWS (1940m) - Tasman region
- Upper Rakaia EWS (1752m) - Canterbury
- Albert Burn EWS (1280m) - Mt Aspiring region
## π§ Use Cases
- Avalanche safety planning
- Alpine recreation planning
- Research proof-of-concept
- Climate monitoring
- Water resource assessment
Perfect when you need NZ snow data but can't navigate complex authentication systems!
""" |