File size: 16,699 Bytes
10e9b7d
 
eccf8e4
29140cf
323f26e
fc6f881
 
323f26e
fc6f881
23a6007
9029749
fc6f881
622f2bb
3b2a7e8
fc6f881
 
 
 
9029749
fc6f881
 
9029749
fc6f881
 
 
 
2200521
 
 
 
 
 
 
 
 
 
fc6f881
 
 
a82796c
3db6293
fc6f881
ebec9e2
cc0b0be
323f26e
fc6f881
 
 
935cde9
defd4dc
9029749
 
 
fc6f881
 
9029749
a82796c
fc6f881
 
 
 
 
1c5f119
31243f4
 
34292b8
fc6f881
34292b8
fc6f881
 
 
 
 
8950f6a
fc6f881
 
 
 
 
 
ee44bc0
fc6f881
ee44bc0
fc6f881
4beca24
fc6f881
 
 
 
 
 
 
29140cf
fc6f881
 
 
 
 
 
b058559
fc6f881
 
 
 
 
 
ebec9e2
 
fc6f881
622f2bb
 
 
 
fc6f881
 
7dfd849
 
 
 
 
 
 
 
 
 
 
ebec9e2
 
3b2a7e8
 
 
 
 
 
 
 
fc6f881
1805291
 
5e54175
1805291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e54175
1805291
 
 
fc6f881
ebec9e2
 
fc6f881
 
 
 
 
7dfd849
fc6f881
 
 
 
 
7dfd849
fc6f881
 
 
 
 
7dfd849
fc6f881
 
 
 
 
323f26e
fc6f881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4021bf3
3e0fef2
31243f4
 
 
 
7d65c66
fc6f881
7e21665
7e4a06b
3e0fef2
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
3e0fef2
31243f4
fc6f881
31243f4
fc6f881
31243f4
3c4371f
31243f4
3e0fef2
 
36ed51a
3e0fef2
3c4371f
7d65c66
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
3e0fef2
 
31243f4
e80aab9
31243f4
 
3c4371f
3e0fef2
 
 
7d65c66
31243f4
 
e80aab9
b177367
7d65c66
 
3e0fef2
 
31243f4
 
 
 
 
 
3e0fef2
31243f4
3e0fef2
cc0b0be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e0fef2
 
fc6f881
3e0fef2
 
 
cc0b0be
 
3e0fef2
 
fc6f881
3e0fef2
31243f4
fc6f881
3e0fef2
 
 
cc0b0be
 
3e0fef2
31243f4
 
3c4371f
31243f4
 
b177367
3e0fef2
 
 
 
 
 
31243f4
e80aab9
7d65c66
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
 
 
 
31243f4
0ee0419
e514fd7
 
 
81917a3
e514fd7
 
 
 
 
 
 
 
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
9088b99
cc0b0be
 
 
 
 
e80aab9
31243f4
 
 
e80aab9
 
 
3c4371f
7d65c66
3c4371f
fc6f881
7d65c66
3c4371f
 
7d65c66
3c4371f
7d65c66
 
fc6f881
7d65c66
 
 
 
 
 
3c4371f
 
31243f4
fc6f881
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import os
import gradio as gr
import requests
import ast
import json
import time
import pandas as pd
from datetime import datetime
from typing import List, Dict, Any, Annotated
from langgraph.graph import Graph, StateGraph
from typing_extensions import TypedDict
from openai import OpenAI
from tools import simple_search
import re

# -------------------------
# Utility helpers
# -------------------------

def override(_, new):
    return new

def merge_dicts(old: Dict, new: Dict) -> Dict:
    """Merge two dictionaries, with *new* values taking precedence."""
    return {**old, **new}

def tighten(q: str) -> str:
    """
    Strip long GAIA questions down to quoted phrases and capitalised words.
    Falls back to the original text if we strip too much.
    """
    quoted = re.findall(r'"([^"]+)"', q)
    caps   = re.findall(r'\b([A-Z0-9][\w-]{2,})', q)
    short  = " ".join(quoted + caps)
    return short or q

# -------------------------
# Environment & constants
# -------------------------

DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")

# Remove logs directory creation since we're not storing logs anymore

# -------------------------
# State definition
# -------------------------

class AgentState(TypedDict):
    question: Annotated[str, override]
    current_step: Annotated[str, override]
    final_answer: Annotated[str, override]
    history: Annotated[List[Dict[str, str]], list.__add__]
    needs_search: Annotated[bool, override]
    search_query: Annotated[str, override]
    task_id: Annotated[str, override]
    logs: Annotated[Dict[str, Any], merge_dicts]

# -------------------------
# BasicAgent implementation
# -------------------------

class BasicAgent:
    def __init__(self):
        if not OPENAI_API_KEY:
            raise EnvironmentError("OPENAI_API_KEY not set")
        self.llm = OpenAI(api_key=OPENAI_API_KEY)
        self.workflow = self._build_workflow()

    # ---- Low‑level LLM call
    def _call_llm(self, prompt: str, max_tokens: int = 256) -> str:
        resp = self.llm.chat.completions.create(
            model="gpt-3.5-turbo",
            messages=[
                {"role": "system", "content": "You are a careful reasoning assistant."},
                {"role": "user", "content": prompt},
            ],
            temperature=0.3,
            max_tokens=max_tokens,
        )
        return resp.choices[0].message.content.strip()

    # ---- Workflow nodes
    def _analyze_question(self, state: AgentState) -> AgentState:
        prompt = (
            "You will receive a user question. Think step‑by‑step to decide whether external web search is required. "
            "Respond ONLY with a valid Python dict literal in the following format and NOTHING else:\n"
            "{\n  'needs_search': bool,\n  'search_query': str\n} \n\n"
            f"Question: {state['question']}"
        )
        raw = self._call_llm(prompt)
        try:
            decision = ast.literal_eval(raw)
            state["needs_search"] = bool(decision.get("needs_search", False))
            state["search_query"] = decision.get("search_query", state["question"])
        except Exception:
            # fallback: assume search needed
            state["needs_search"] = True
            state["search_query"] = state["question"]
            decision = {"parse_error": raw}
        state["logs"] = {
            "analyze": {"prompt": prompt, "llm_response": raw, "decision": decision}
        }
        state["current_step"] = "search" if state["needs_search"] else "answer"
        state["history"].append({"step": "analyze", "output": decision})
        return state

    def _perform_search(self, state: AgentState) -> AgentState:
        results = simple_search(state["search_query"], max_results=5)
        print("\nSearch Results:")
        for i, s in enumerate(results, 1):
            print(f"[{i}] {s[:120]}…")
        state["history"].append({"step": "search", "results": results})
        state["logs"]["search"] = {"query": state["search_query"], "results": results}
        state["needs_search"] = not results  # Set to True if no results found
        state["current_step"] = "recheck"
        return state

    def _re_evaluate(self, state: AgentState) -> AgentState:
        """If search returned nothing, reformulate a shorter query."""
        if state["needs_search"]:
            state["search_query"] = tighten(state["question"])
            state["current_step"] = "search"
        else:
            state["current_step"] = "answer"
        return state

    def _extract_boxed_answer(self, text: str) -> str:
        """Extract answer from boxed format or return original text if no box found."""
        # Look for text between [box] and [/box] tags
        box_match = re.search(r'\[box\](.*?)\[/box\]', text, re.DOTALL)
        if box_match:
            return box_match.group(1).strip()
        return text.strip()

    def _generate_answer(self, state: AgentState) -> AgentState:
        # Get the last search results
        search_block = "\n".join(state["history"][-1]["results"])  # last search step
        
        prompt = f"""
You are an expert fact-extractor. Using ONLY the text below, answer the question.

Question:
{state['question']}

Search snippets (bold terms are highlighted):
{search_block}

Think step-by-step. Quote exact numbers/names if needed.
END EACH STEP with ➤.  After reasoning, output:

ANSWER: <the short answer here>

No other text.
"""
        raw = self._call_llm(prompt, 300)
        answer = raw.splitlines()[-1].replace("ANSWER:", "").strip()
        
        state["final_answer"] = answer
        state["history"].append({"step": "answer", "output": raw})  # Store full response for debugging
        state["logs"]["final_answer"] = {"prompt": prompt, "response": raw}
        state["current_step"] = "done"
        return state

    # ---- Build LangGraph workflow
    def _build_workflow(self) -> Graph:
        sg = StateGraph(state_schema=AgentState)
        sg.add_node("analyze", self._analyze_question)
        sg.add_node("search", self._perform_search)
        sg.add_node("recheck", self._re_evaluate)
        sg.add_node("answer", self._generate_answer)

        # transitions
        sg.add_edge("analyze", "search")
        sg.add_edge("analyze", "answer")
        sg.add_edge("search", "recheck")

        def router(state: AgentState):
            return state["current_step"]

        sg.add_conditional_edges("analyze", router, {"search": "search", "answer": "answer"})
        sg.add_conditional_edges("recheck", router, {"search": "search", "answer": "answer"})
        sg.set_entry_point("analyze")
        sg.set_finish_point("answer")
        return sg.compile()

    # ---- Public call
    def __call__(self, question: str, task_id: str = "unknown") -> str:
        state: AgentState = {
            "question": question,
            "current_step": "analyze",
            "final_answer": "",
            "history": [],
            "needs_search": False,
            "search_query": "",
            "task_id": task_id,
            "logs": {},
        }
        final_state = self.workflow.invoke(state)
        return final_state["final_answer"]

# ----------------------------------------------------------------------------------
# Gradio Interface & Submission Routines
# ----------------------------------------------------------------------------------

def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID")
    print("Space ID: ", space_id)
    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent
    try:
        print("Initializing agent...")
        agent = BasicAgent()
        print("Agent initialized successfully.")
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None

    # In the case of an app running as a hugging Face space, this link points toward your codebase
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(f"Agent code location: {agent_code}")

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
        print(f"Error decoding JSON response from questions endpoint: {e}")
        print(f"Response text: {response.text[:500]}")
        return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent workflow on {len(questions_data)} questions...")
    
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue

        try:
            print(f"\nProcessing question {task_id}: {question_text[:50]}...")
            
            # Initialize state for this question
            state: AgentState = {
                "question": question_text,
                "current_step": "analyze",
                "final_answer": "",
                "history": [],
                "needs_search": False,
                "search_query": "",
                "task_id": task_id,
                "logs": {},
            }
            
            # Run the workflow
            final_state = agent.workflow.invoke(state)
            answer = final_state["final_answer"]
            
            # Format logs for display
            logs_text = json.dumps(final_state["logs"], indent=2)
            
            # Add to results
            answers_payload.append({"task_id": task_id, "submitted_answer": answer})
            results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "Submitted Answer": answer,
                "Processing Logs": logs_text
            })
            
            print(f"Completed question {task_id}")
            
        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "Submitted Answer": f"ERROR: {e}",
                "Processing Logs": f"Error occurred: {str(e)}"
            })

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {
        "username": username.strip(),
        "agent_code": agent_code,
        "answers": answers_payload
    }
    status_update = f"Agent workflow finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(
        label="Questions and Agent Answers", 
        wrap=True,
        column_widths=["10%", "30%", "30%", "30%"]  # Adjust column widths for better display
    )

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup:
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)