File size: 16,481 Bytes
10e9b7d eccf8e4 29140cf 323f26e fc6f881 323f26e fc6f881 23a6007 9029749 fc6f881 9029749 fc6f881 9029749 fc6f881 a82796c 3db6293 fc6f881 ebec9e2 cc0b0be 323f26e fc6f881 323f26e fc6f881 935cde9 defd4dc 9029749 fc6f881 9029749 a82796c fc6f881 1c5f119 31243f4 34292b8 fc6f881 34292b8 fc6f881 ee44bc0 fc6f881 ee44bc0 fc6f881 4beca24 fc6f881 29140cf fc6f881 b058559 fc6f881 ebec9e2 fc6f881 ebec9e2 fc6f881 ebec9e2 fc6f881 ebec9e2 fc6f881 ebec9e2 fc6f881 323f26e fc6f881 4021bf3 3e0fef2 31243f4 7d65c66 fc6f881 7e21665 7e4a06b 3e0fef2 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 3e0fef2 31243f4 fc6f881 31243f4 fc6f881 31243f4 3c4371f 31243f4 3e0fef2 36ed51a 3e0fef2 3c4371f 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 3e0fef2 31243f4 e80aab9 31243f4 3c4371f 3e0fef2 7d65c66 31243f4 e80aab9 b177367 7d65c66 3e0fef2 31243f4 3e0fef2 31243f4 3e0fef2 cc0b0be 3e0fef2 fc6f881 3e0fef2 cc0b0be 3e0fef2 fc6f881 3e0fef2 31243f4 fc6f881 3e0fef2 cc0b0be 3e0fef2 31243f4 3c4371f 31243f4 b177367 3e0fef2 31243f4 e80aab9 7d65c66 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 3c4371f 31243f4 7d65c66 31243f4 3c4371f e80aab9 31243f4 7d65c66 31243f4 e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 9088b99 cc0b0be e80aab9 31243f4 e80aab9 3c4371f 7d65c66 3c4371f fc6f881 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 fc6f881 7d65c66 3c4371f 31243f4 fc6f881 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
import os
import gradio as gr
import requests
import ast
import json
import time
import pandas as pd
from datetime import datetime
from typing import List, Dict, Any, Annotated
from langgraph.graph import Graph, StateGraph
from typing_extensions import TypedDict
from openai import OpenAI
# -------------------------
# Utility helpers
# -------------------------
def override(_, new):
return new
def merge_dicts(old: Dict, new: Dict) -> Dict:
"""Merge two dictionaries, with *new* values taking precedence."""
return {**old, **new}
# -------------------------
# Environment & constants
# -------------------------
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
JINA_API_KEY = os.getenv("JINA_API_KEY")
# Remove logs directory creation since we're not storing logs anymore
# -------------------------
# Jina AI search tool (replaces DDG + Reader)
# -------------------------
def jina_search_tool(query: str, api_key: str, max_results: int = 5) -> List[str]:
"""Return *max_results* clean markdown snippets for *query* using s.jina.ai."""
endpoint = f"https://s.jina.ai/{query.replace(' ', '+')}"
headers = {
"Authorization": f"Bearer {api_key}",
"Accept": "application/json",
"User-Agent": "Mozilla/5.0",
}
resp = requests.get(endpoint, headers=headers, timeout=15)
if resp.status_code != 200:
raise RuntimeError(f"Jina search failed with status {resp.status_code}: {resp.text[:200]}")
data = resp.json()
return [item.get("content", "") for item in data.get("results", [])][:max_results]
# -------------------------
# Logging helper
# -------------------------
def log_to_file(task_id: str, question: str, log_data: Dict[str, Any]):
ts = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = os.path.join(LOGS_DIR, f"question_{task_id}_{ts}.json")
with open(filename, "w", encoding="utf-8") as f:
json.dump({"task_id": task_id, "question": question, "timestamp": ts, "logs": log_data}, f, indent=2)
# -------------------------
# State definition
# -------------------------
class AgentState(TypedDict):
question: Annotated[str, override]
current_step: Annotated[str, override]
final_answer: Annotated[str, override]
history: Annotated[List[Dict[str, str]], list.__add__]
needs_search: Annotated[bool, override]
search_query: Annotated[str, override]
task_id: Annotated[str, override]
logs: Annotated[Dict[str, Any], merge_dicts]
# -------------------------
# BasicAgent implementation
# -------------------------
class BasicAgent:
def __init__(self):
if not OPENAI_API_KEY:
raise EnvironmentError("OPENAI_API_KEY not set")
if not JINA_API_KEY:
raise EnvironmentError("JINA_API_KEY not set")
self.llm = OpenAI(api_key=OPENAI_API_KEY)
self.workflow = self._build_workflow()
# ---- Low‑level LLM call
def _call_llm(self, prompt: str, max_tokens: int = 256) -> str:
resp = self.llm.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": "You are a careful reasoning assistant."},
{"role": "user", "content": prompt},
],
temperature=0.3,
max_tokens=max_tokens,
)
return resp.choices[0].message.content.strip()
# ---- Workflow nodes
def _analyze_question(self, state: AgentState) -> AgentState:
prompt = (
"You will receive a user question. Think step‑by‑step to decide whether external web search is required. "
"Respond ONLY with a valid Python dict literal in the following format and NOTHING else:\n"
"{\n 'needs_search': bool,\n 'search_query': str\n} \n\n"
f"Question: {state['question']}"
)
raw = self._call_llm(prompt)
try:
decision = ast.literal_eval(raw)
state["needs_search"] = bool(decision.get("needs_search", False))
state["search_query"] = decision.get("search_query", state["question"])
except Exception:
# fallback: assume search needed
state["needs_search"] = True
state["search_query"] = state["question"]
decision = {"parse_error": raw}
state["logs"] = {
"analyze": {"prompt": prompt, "llm_response": raw, "decision": decision}
}
state["current_step"] = "search" if state["needs_search"] else "answer"
state["history"].append({"step": "analyze", "output": decision})
return state
def _perform_search(self, state: AgentState) -> AgentState:
try:
results = jina_search_tool(state["search_query"], JINA_API_KEY)
except Exception as e:
results = [f"SEARCH_ERROR: {e}"]
state["history"].append({"step": "search", "results": results})
state["logs"]["search"] = {"query": state["search_query"], "results": results}
state["current_step"] = "answer"
return state
def _generate_answer(self, state: AgentState) -> AgentState:
history_text = "\n".join(str(item) for item in state["history"])
prompt = (
f"Answer the user question as directly as possible. If sources were retrieved, incorporate them.\n"
f"Question: {state['question']}\n\nContext:\n{history_text}\n\n"
"Give ONLY the final answer without extra formatting or explanation."
)
answer = self._call_llm(prompt, max_tokens=150)
state["final_answer"] = answer
state["history"].append({"step": "answer", "output": answer})
state["logs"]["final_answer"] = {"prompt": prompt, "response": answer}
state["current_step"] = "done"
return state
# ---- Build LangGraph workflow
def _build_workflow(self) -> Graph:
sg = StateGraph(state_schema=AgentState)
sg.add_node("analyze", self._analyze_question)
sg.add_node("search", self._perform_search)
sg.add_node("answer", self._generate_answer)
# transitions
sg.add_edge("analyze", "search")
sg.add_edge("analyze", "answer")
sg.add_edge("search", "answer")
def router(state: AgentState):
return state["current_step"]
sg.add_conditional_edges("analyze", router, {"search": "search", "answer": "answer"})
sg.set_entry_point("analyze")
sg.set_finish_point("answer")
return sg.compile()
# ---- Public call
def __call__(self, question: str, task_id: str = "unknown") -> str:
state: AgentState = {
"question": question,
"current_step": "analyze",
"final_answer": "",
"history": [],
"needs_search": False,
"search_query": "",
"task_id": task_id,
"logs": {},
}
final_state = self.workflow.invoke(state)
return final_state["final_answer"]
# ----------------------------------------------------------------------------------
# Gradio Interface & Submission Routines
# ----------------------------------------------------------------------------------
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID")
print("Space ID: ", space_id)
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
print("Initializing agent...")
agent = BasicAgent()
print("Agent initialized successfully.")
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(f"Agent code location: {agent_code}")
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent workflow on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
print(f"\nProcessing question {task_id}: {question_text[:50]}...")
# Initialize state for this question
state: AgentState = {
"question": question_text,
"current_step": "analyze",
"final_answer": "",
"history": [],
"needs_search": False,
"search_query": "",
"task_id": task_id,
"logs": {},
}
# Run the workflow
final_state = agent.workflow.invoke(state)
answer = final_state["final_answer"]
# Format logs for display
logs_text = json.dumps(final_state["logs"], indent=2)
# Add to results
answers_payload.append({"task_id": task_id, "submitted_answer": answer})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": answer,
"Processing Logs": logs_text
})
print(f"Completed question {task_id}")
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"ERROR: {e}",
"Processing Logs": f"Error occurred: {str(e)}"
})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
status_update = f"Agent workflow finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(
label="Questions and Agent Answers",
wrap=True,
column_widths=["10%", "30%", "30%", "30%"] # Adjust column widths for better display
)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup:
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)
|