naman1102's picture
Update app.py
a82796c
raw
history blame
20.3 kB
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import ast
import operator
import time
import json
from datetime import datetime
from typing import List, Dict, Any, Optional, Annotated
from langgraph.graph import Graph, StateGraph
from langgraph.prebuilt import ToolNode
from tools import simple_search
from openai import OpenAI
from typing_extensions import TypedDict
def override(_, new): return new
def merge_dicts(dict1: Dict, dict2: Dict) -> Dict:
"""Merge two dictionaries, with values from dict2 taking precedence."""
return {**dict1, **dict2}
print("trial")
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") # Make sure to set this environment variable
# Create logs directory if it doesn't exist
LOGS_DIR = "question_logs"
os.makedirs(LOGS_DIR, exist_ok=True)
def log_to_file(task_id: str, question: str, log_data: Dict[str, Any]):
"""Store logs for a question in a JSON file."""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"{LOGS_DIR}/question_{task_id}_{timestamp}.json"
log_entry = {
"task_id": task_id,
"question": question,
"timestamp": timestamp,
"logs": log_data
}
with open(filename, 'w', encoding='utf-8') as f:
json.dump(log_entry, f, indent=2, ensure_ascii=False)
print(f"Logs saved to {filename}")
class AgentState(TypedDict):
question: Annotated[str, override]
current_step: Annotated[str, override]
tool_output: Annotated[str, override]
final_answer: Annotated[str, override]
history: Annotated[List[Dict[str, str]], operator.add]
needs_more_info: Annotated[bool, override]
search_query: Annotated[str, override]
task_id: Annotated[str, override]
logs: Annotated[Dict[str, Any], merge_dicts] # Use merge_dicts instead of operator.add
class BasicAgent:
def __init__(self):
print("Initializing BasicAgent with OpenAI...")
if not OPENAI_API_KEY:
raise ValueError("OPENAI_API_KEY environment variable not set. Please set your OpenAI API key.")
# Initialize OpenAI client
self.llm = OpenAI(api_key=OPENAI_API_KEY)
# Create the agent workflow
print("Creating workflow variable")
self.workflow = self._create_workflow()
print("BasicAgent initialization complete.")
def _call_llm_api(self, prompt: str) -> str:
"""Call the model and return the raw text output."""
try:
print("=== Sending prompt ===")
print(prompt[:500])
response = self.llm.chat.completions.create(
model="gpt-4.1-nano",
messages=[
{"role": "system", "content": "You are a helpful AI assistant that provides clear and concise answers."},
{"role": "user", "content": prompt}
],
max_tokens=200,
temperature=0.7,
top_p=0.95,
frequency_penalty=0.1
)
print("=== Received response ===")
response_text = response.choices[0].message.content
print(response_text)
return response_text
except Exception as e:
print(f"Error calling LLM API: {e}")
return f"Error getting response from LLM: {str(e)}"
def _create_workflow(self) -> Graph:
"""Create the agent workflow using LangGraph."""
# Create the workflow with state schema
print("Creating Stategraph : error happens here?")
workflow = StateGraph(state_schema=AgentState)
print("Stategraph created")
# Add nodes
workflow.add_node("analyze", self._analyze_question)
workflow.add_node("search", self._use_search)
workflow.add_node("generate_answer", self._generate_final_answer)
# Define edges
workflow.add_edge("analyze", "search")
workflow.add_edge("analyze", "generate_answer")
workflow.add_edge("search", "generate_answer")
# Define conditional edges
def router(state: AgentState) -> str:
if state["current_step"] == 'search':
return 'search'
elif state["current_step"] == 'final_answer':
return 'generate_answer'
return 'analyze'
workflow.add_conditional_edges(
"analyze",
router,
{
"search": "search",
"final_answer": "generate_answer"
}
)
# Set entry and exit points
workflow.set_entry_point("analyze")
workflow.set_finish_point("generate_answer")
return workflow.compile()
def _analyze_question(self, state: AgentState) -> AgentState:
"""Analyze the question and determine the next step."""
prompt = f"""Analyze this question and determine what needs to be done: {state['question']}
Return ONLY a Python dictionary in this exact format, with no other text or explanation:
{{
"needs_search": true/false,
"search_query": "query if needed"
}}"""
try:
llm_response = self._call_llm_api(prompt)
print("\n=== Analyze Question LLM Response ===")
print(f"Input: {state['question']}")
print(f"LLM Response: {llm_response}")
# Log the analysis step
state["logs"]["analyze"] = {
"prompt": prompt,
"response": llm_response,
"timestamp": datetime.now().isoformat()
}
analysis = ast.literal_eval(llm_response)
state["needs_more_info"] = analysis.get('needs_search', False)
state["search_query"] = analysis.get('search_query', '')
if analysis.get('needs_search', False):
state["current_step"] = 'search'
else:
state["current_step"] = 'final_answer'
except (ValueError, SyntaxError) as e:
print(f"Error parsing LLM response: {e}")
# Default to search if we can't parse the response
state["needs_more_info"] = True
state["search_query"] = state["question"]
state["current_step"] = 'search'
# Log the error
state["logs"]["analyze_error"] = {
"error": str(e),
"timestamp": datetime.now().isoformat()
}
return state
def _use_search(self, state: AgentState) -> AgentState:
"""Use the search tool."""
time.sleep(2) # Sleep before search
try:
print("\n=== Search Tool ===")
print(f"Search Query: {state['search_query']}")
# Use the simplified search function
search_results = simple_search(
query=state["search_query"],
max_results=3
)
print("Search Results:")
for i, result in enumerate(search_results, 1):
print(f"{i}. {result}")
# Log the search step
state["logs"]["search"] = {
"query": state["search_query"],
"results": search_results,
"timestamp": datetime.now().isoformat()
}
state["history"].append({
'step': 'search',
'query': state["search_query"],
'results': search_results
})
state["needs_more_info"] = False
state["current_step"] = 'final_answer'
except Exception as e:
print(f"Search Error: {e}")
state["history"].append({
'step': 'search_error',
'error': str(e)
})
state["current_step"] = 'final_answer'
# Log the error
state["logs"]["search_error"] = {
"error": str(e),
"timestamp": datetime.now().isoformat()
}
return state
def _generate_final_answer(self, state: AgentState) -> AgentState:
"""Generate the final answer based on all gathered information."""
history_str = "\n".join([f"{h['step']}: {h.get('output', h.get('results', h.get('error', '')))}"
for h in state["history"]])
prompt = f"""Question: {state['question']}
History of steps taken:
{history_str}
Return ONLY the direct answer to the question. Do not include any explanations, introductions, or formatting. Just the answer."""
print("\n=== Generate Final Answer ===")
print(f"Question: {state['question']}")
print("History:")
print(history_str)
llm_response = self._call_llm_api(prompt)
print("\nFinal Answer:")
print(llm_response)
# Log the final answer generation
state["logs"]["final_answer"] = {
"prompt": prompt,
"response": llm_response,
"history": history_str,
"timestamp": datetime.now().isoformat()
}
state["final_answer"] = llm_response
return state
def __call__(self, question: str, task_id: str = "unknown") -> str:
"""Process a question through the agent workflow."""
print(f"Agent received question: {question[:50]}...")
try:
# Initialize the state
initial_state: AgentState = {
"question": question,
"current_step": "analyze",
"tool_output": "",
"final_answer": "",
"history": [],
"needs_more_info": False,
"search_query": "",
"task_id": task_id,
"logs": {}
}
# Run the workflow
final_state = self.workflow.invoke(initial_state)
# Save logs to file
log_to_file(
task_id=final_state["task_id"],
question=final_state["question"],
log_data=final_state["logs"]
)
return final_state["final_answer"]
except Exception as e:
print(f"Error in agent processing: {e}")
return f"I encountered an error while processing your question: {str(e)}"
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
print("Space ID: ", space_id)
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
print("Initializing agent: trial ")
agent = BasicAgent()
print("Agent initialized successfully with workflow.")
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(f"Agent code location: {agent_code}")
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent workflow on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
# Initialize the state for this question
initial_state = {
"question": question_text,
"current_step": "analyze",
"tool_output": "",
"final_answer": "",
"history": [],
"needs_more_info": False,
"search_query": "",
"task_id": task_id,
"logs": {}
}
# Run the workflow for this question
print(f"\nProcessing question {task_id}: {question_text[:50]}...")
final_state = agent.workflow.invoke(initial_state)
# Log the workflow history
workflow_history = "\n".join([
f"Step: {h['step']}\n" +
f"Input: {h.get('input', h.get('query', ''))}\n" +
f"Output: {h.get('output', h.get('results', h.get('error', '')))}"
for h in final_state["history"]
])
# Add to results
submitted_answer = final_state["final_answer"]
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer,
"Workflow History": workflow_history
})
print(f"Completed question {task_id} with {len(final_state['history'])} workflow steps")
except Exception as e:
print(f"Error running agent workflow on task {task_id}: {e}")
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"WORKFLOW ERROR: {e}",
"Workflow History": "Error occurred before workflow completion"
})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
status_update = f"Agent workflow finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)