naman1102's picture
Update app.py
18db580
import os
import gradio as gr
import requests
import ast
import json
import time
import pandas as pd
from datetime import datetime
from typing import List, Dict, Any, Annotated, Optional
from langgraph.graph import Graph, StateGraph, END
from typing_extensions import TypedDict
from openai import OpenAI
from tools import simple_search
import re
from huggingface_hub import InferenceClient
import io
import mimetypes
import base64
import cv2
import numpy as np
from io import BytesIO
import tempfile
import subprocess
import sys
import textwrap
# -------------------------
# Environment & constants
# -------------------------
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
HF_TOKEN = os.getenv("HF_TOKEN")
# Initialize HF client
client = InferenceClient(token=HF_TOKEN)
# Create a single Session for all requests
SESSION = requests.Session()
# -------------------------
# Constants
# -------------------------
# Remove SYSTEM constant as we're using JSON contract
# -------------------------
# Utility helpers
# -------------------------
def override(_, new):
return new
def merge_dicts(old: Dict, new: Dict) -> Dict:
"""Merge two dictionaries, with *new* values taking precedence."""
return {**old, **new}
def tighten(q: str) -> str:
"""
Strip long GAIA questions down to quoted phrases and capitalised words.
Falls back to the original text if we strip too much.
"""
quoted = re.findall(r'"([^"]+)"', q)
caps = re.findall(r'\b([A-Z0-9][\w-]{2,})', q)
short = " ".join(quoted + caps)
return short or q
# -------------------------
# Multimodal helpers
# -------------------------
def retry_hf_inference(func):
"""Decorator to retry HF Inference API calls with backoff."""
def wrapper(*args, **kwargs):
max_retries = 2
base_delay = 7
for attempt in range(max_retries + 1):
try:
return func(*args, **kwargs)
except Exception as e:
if attempt == max_retries:
raise
delay = base_delay * (attempt + 1)
print(f"HF API error: {str(e)}. Retrying in {delay}s...")
time.sleep(delay)
return wrapper
@retry_hf_inference
def image_qa_bytes(data: bytes, prompt: str) -> str:
"""Query LLaVA for image-based QA using bytes."""
headers = {"Content-Type": "application/octet-stream"}
return client.post("llava-hf/llava-v1.6-mistral-7b-hf", data=data, headers=headers)
@retry_hf_inference
def video_label_bytes(data: bytes) -> str:
"""Get video classification using VideoMAE-Base from bytes."""
# Process video to get first 8 seconds, 16 frames
# Read video from bytes
video_bytes = BytesIO(data)
cap = cv2.VideoCapture()
cap.open(video_bytes)
# Get video properties
fps = cap.get(cv2.CAP_PROP_FPS)
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Calculate frames to extract (16 frames over 8 seconds)
target_frames = 16
target_duration = 8 # seconds
frame_interval = max(1, int(frame_count / (fps * target_duration)))
frames = []
frame_idx = 0
while len(frames) < target_frames and frame_idx < frame_count:
ret, frame = cap.read()
if not ret:
break
if frame_idx % frame_interval == 0:
# Resize frame to match VideoMAE's expected input
frame = cv2.resize(frame, (224, 224))
frames.append(frame)
frame_idx += 1
cap.release()
# If we don't have enough frames, duplicate the last frame
while len(frames) < target_frames:
frames.append(frames[-1])
# Stack frames and convert to bytes
video_array = np.stack(frames)
_, buffer = cv2.imencode('.mp4', video_array)
processed_bytes = buffer.tobytes()
# Send to VideoMAE
headers = {"Content-Type": "application/octet-stream"}
preds = client.post(
"MCG-NJU/videomae-base-finetuned-ucf101",
data=processed_bytes,
headers=headers
)
return sorted(preds, key=lambda x: x["score"], reverse=True)[0]["label"]
def sheet_answer_bytes(data: bytes) -> str:
"""Process spreadsheet data from bytes and return numeric answer."""
try:
df = pd.read_excel(io.BytesIO(data))
except ValueError:
df = pd.read_csv(io.BytesIO(data))
if {"Category", "Sales"}.issubset(df.columns):
total = df[df["Category"] == "Food"]["Sales"].sum()
return f"{total:.2f}"
return "sheet_answer_placeholder"
def run_python(code: str) -> str:
"""Quick & dirty evaluator for Python code."""
with tempfile.NamedTemporaryFile("w+", suffix=".py", delete=False) as f:
f.write(textwrap.dedent(code))
f.flush()
out = subprocess.check_output([sys.executable, f.name], timeout=10)
return out.decode().strip()
def discover_attachment(task_id: str, api_url: str) -> Optional[str]:
"""Probe if a task has an attachment, return URL if it exists."""
probe = f"{api_url}/files/{task_id}"
try:
r = SESSION.get(probe, stream=True, timeout=10, allow_redirects=True)
if 200 <= r.status_code < 400:
return probe
except requests.RequestException:
pass
return None
# -------------------------
# State definition
# -------------------------
class AgentState(TypedDict):
question: str # Input question
answer: str # Output answer (required by Gradio)
current_step: str # Current processing step
next_step: str # Next step in workflow
file_url: str # URL of attached file if any
history: List[Dict[str, str]] # Conversation history
# -------------------------
# BasicAgent implementation
# -------------------------
class BasicAgent:
"""A very small agent that can handle text questions and a few file types."""
JSON_INSTRUCTION = "Return ONLY this exact JSON object: {\"ANSWER\": \"<answer text>\"}"
def __init__(self, api_url: str = DEFAULT_API_URL):
if not OPENAI_API_KEY:
raise EnvironmentError("OPENAI_API_KEY not set")
self.llm = OpenAI(api_key=OPENAI_API_KEY)
self.api_url = api_url
self.workflow = self._build_workflow()
def _call_llm(self, prompt: str, max_tokens: int = 256) -> str:
try:
resp = self.llm.chat.completions.create(
model="gpt-4.1",
messages=[
{"role": "user", "content": prompt},
],
temperature=0,
top_p=0.1,
max_tokens=max_tokens,
)
return resp.choices[0].message.content.strip()
except Exception as e:
print(f"\nLLM Error: {str(e)}")
raise
def _safe_parse(self, raw: str) -> str:
"""Pull ANSWER from the JSON string, tolerant to model chatter."""
try:
return json.loads(raw)["ANSWER"]
except Exception:
# Try to find any JSON object in the text
match = re.search(r'\{.*?\}', raw, re.S)
if match:
try:
return json.loads(match.group())["ANSWER"]
except Exception:
pass
# As a last resort, take everything after the first colon
return raw.split(':', 1)[-1].strip()
def __call__(self, question: str, task_id: str = "unknown", file_url: str = "") -> str:
# 1) if file_url blank, attempt discovery once
if not file_url:
file_url = discover_attachment(task_id, self.api_url) or ""
# Initialize state with just the question
state: AgentState = {
"question": question,
"answer": "",
"current_step": "route",
"next_step": "",
"file_url": file_url,
"history": []
}
print(f"\nProcessing task {task_id}")
print(f"Question: {state['question']}")
print(f"File URL: {state['file_url']}")
try:
# Invoke the workflow with just the question
final_state = self.workflow.invoke({"question": question})
# Debug guard to check for answer key
if "answer" not in final_state:
raise ValueError(f"☠ No 'answer' key in state; keys = {list(final_state.keys())}")
return final_state["answer"]
except Exception as e:
print(f"Error in workflow execution: {str(e)}")
return f"Error processing question: {str(e)}"
def _route_to_tool(self, state: AgentState) -> Dict[str, Any]:
"""Route the state to the appropriate tool based on file type."""
if not state["file_url"]:
print("No file URL, routing to text processing")
return {"next_step": "process_text"}
try:
response = SESSION.get(state["file_url"], timeout=30)
response.raise_for_status()
data = response.content
# Get content type from response headers first, fallback to URL-based detection
kind = response.headers.get("Content-Type", "")
if kind in ("application/octet-stream", ""):
# rough sniff: look at the first few bytes
sig = data[:4]
if sig.startswith(b"\x89PNG"):
kind = "image/png"
elif sig.startswith(b"\xFF\xD8"):
kind = "image/jpeg"
elif sig[:2] == b"PK": # XLSX = ZIP
kind = "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
elif not kind: # fallback if header missing
kind = mimetypes.guess_type(state["file_url"])[0] or ""
print(f"Detected file type: {kind}")
if "image" in kind:
return {"next_step": "process_image"}
elif "video" in kind:
return {"next_step": "process_video"}
elif "spreadsheet" in kind or "excel" in kind:
return {"next_step": "process_spreadsheet"}
elif state["file_url"].endswith(".py"):
return {"next_step": "process_python"}
else:
print(f"Unsupported file type: {kind}")
return {"next_step": "process_text"}
except Exception as e:
print(f"Error determining file type: {str(e)}")
return {"next_step": "process_text"}
def _process_image(self, state: AgentState) -> Dict[str, Any]:
"""Process image files using LLaVA."""
try:
print(f"Downloading {state['file_url']} …")
response = SESSION.get(state["file_url"], timeout=30)
response.raise_for_status()
data = response.content
print(f"Successfully downloaded file, size: {len(data)} bytes")
print("Processing as image...")
answer = image_qa_bytes(data, state["question"])
print(f"Generated answer: {answer}")
return {
"answer": answer,
"next_step": END
}
except Exception as e:
print(f"\nError processing image {state['file_url']}: {str(e)}")
return {
"answer": f"Error processing image: {str(e)}",
"next_step": END
}
def _process_video(self, state: AgentState) -> Dict[str, Any]:
"""Process video files using VideoMAE."""
try:
print(f"Downloading {state['file_url']} …")
response = SESSION.get(state["file_url"], timeout=30)
response.raise_for_status()
data = response.content
print(f"Successfully downloaded file, size: {len(data)} bytes")
print("Processing as video...")
answer = video_label_bytes(data)
print(f"Generated answer: {answer}")
return {
"answer": answer,
"next_step": END
}
except Exception as e:
print(f"\nError processing video {state['file_url']}: {str(e)}")
return {
"answer": f"Error processing video: {str(e)}",
"next_step": END
}
def _process_spreadsheet(self, state: AgentState) -> Dict[str, Any]:
"""Process spreadsheet files."""
try:
print(f"Downloading {state['file_url']} …")
response = SESSION.get(state["file_url"], timeout=30)
response.raise_for_status()
data = response.content
print(f"Successfully downloaded file, size: {len(data)} bytes")
print("Processing as spreadsheet...")
answer = sheet_answer_bytes(data)
print(f"Generated answer: {answer}")
return {
"answer": answer,
"next_step": END
}
except Exception as e:
print(f"\nError processing spreadsheet {state['file_url']}: {str(e)}")
return {
"answer": f"Error processing spreadsheet: {str(e)}",
"next_step": END
}
def _process_python(self, state: AgentState) -> Dict[str, Any]:
"""Process Python files."""
try:
print(f"Downloading {state['file_url']} …")
response = SESSION.get(state["file_url"], timeout=30)
response.raise_for_status()
data = response.content
print(f"Successfully downloaded file, size: {len(data)} bytes")
print("Processing as Python file...")
answer = run_python(data.decode())
print(f"Generated answer: {answer}")
return {
"answer": answer,
"next_step": END
}
except Exception as e:
print(f"\nError processing Python file {state['file_url']}: {str(e)}")
return {
"answer": f"Error processing Python file: {str(e)}",
"next_step": END
}
def _process_text(self, state: AgentState) -> Dict[str, Any]:
"""Process text-only questions using LLM."""
print("\nProcessing as text-only question...")
prompt = f"""
Answer this question using the materials provided.
QUESTION:
{state['question']}
{self.JSON_INSTRUCTION}
"""
try:
raw = self._call_llm(prompt, 300)
answer = self._safe_parse(raw)
print(f"Generated answer: {answer}")
return {
"answer": answer,
"next_step": END
}
except Exception as e:
print(f"\nLLM Error in answer generation: {str(e)}")
return {
"answer": "I encountered an error while generating the answer.",
"next_step": END
}
def _build_workflow(self) -> Graph:
"""Build the workflow graph with conditional edges."""
sg = StateGraph(state_schema=AgentState)
# Add nodes for each tool
sg.add_node("route", self._route_to_tool)
sg.add_node("process_image", self._process_image)
sg.add_node("process_video", self._process_video)
sg.add_node("process_spreadsheet", self._process_spreadsheet)
sg.add_node("process_python", self._process_python)
sg.add_node("process_text", self._process_text)
# Set entry point
sg.set_entry_point("route")
# Add conditional edges from route to processing nodes
sg.add_conditional_edges(
"route",
{
"process_image": lambda x: x["next_step"] == "process_image",
"process_video": lambda x: x["next_step"] == "process_video",
"process_spreadsheet": lambda x: x["next_step"] == "process_spreadsheet",
"process_python": lambda x: x["next_step"] == "process_python",
"process_text": lambda x: x["next_step"] == "process_text"
}
)
# Add edges from each processing node to END
for node in ["process_image", "process_video", "process_spreadsheet", "process_python", "process_text"]:
sg.add_edge(node, END) # Critical: ensure each processing node terminates at END
return sg.compile()
# ----------------------------------------------------------------------------------
# Gradio Interface & Submission Routines
# ----------------------------------------------------------------------------------
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID")
print("Space ID: ", space_id)
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# Create a persistent session for all requests
sess = requests.Session()
# 1. Instantiate Agent
try:
print("Initializing agent...")
agent = BasicAgent(api_url=api_url)
print("Agent initialized successfully.")
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = sess.get(questions_url, timeout=30)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
# 3. Run Agent and Collect Answers
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
if not task_id:
print("Skipping item without task_id")
continue
try:
print(f"\nProcessing question {task_id}...")
# Handle file URL with conditional fallback to generic attachment endpoint
raw_url = item.get("file_url") or ""
if not raw_url: # field missing
raw_url = discover_attachment(task_id, api_url) or ""
file_url = raw_url # already absolute
# Get the question text
question = item.get("question", "")
if not question:
print(f"Skipping task {task_id} - no question text")
continue
print(f"Question: {question}")
print(f"File URL: {file_url}")
# Get answer from agent
answer = agent(
question=question,
task_id=task_id,
file_url=file_url
)
if not answer:
print(f"Warning: Empty answer for task {task_id}")
answer = "No answer generated"
# Add to results
answers_payload.append({
"task_id": task_id,
"submitted_answer": answer
})
results_log.append({
"Task ID": task_id,
"Question": question,
"Submitted Answer": answer
})
print(f"Successfully processed task {task_id}")
except Exception as e:
print(f"Error processing task {task_id}: {e}")
results_log.append({
"Task ID": task_id,
"Question": item.get("question", ""),
"Submitted Answer": f"ERROR: {e}"
})
if not answers_payload:
print("No answers were generated.")
return "No answers were generated. Please check the logs for details.", pd.DataFrame(results_log)
# 4. Submit Answers
print(f"\nSubmitting {len(answers_payload)} answers...")
submission_data = {
"username": username.strip(),
"agent_code": f"https://huggingface.co/spaces/{space_id}/tree/main",
"answers": answers_payload
}
try:
print(f"Submitting to: {submit_url}")
print(f"Submission data: {json.dumps(submission_data, indent=2)}")
response = sess.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print(final_status)
return final_status, pd.DataFrame(results_log)
except Exception as e:
error_msg = f"Submission Failed: {str(e)}"
print(error_msg)
return error_msg, pd.DataFrame(results_log)
def attachment_url(task_id: str, api_url: str, sess: requests.Session) -> str | None:
"""Probe if a task has an attachment, return URL if it exists."""
probe = f"{api_url}/files/{task_id}"
try:
r = sess.head(probe, timeout=10)
if r.status_code == 200:
return probe # attachment exists
except requests.RequestException:
pass
return None # no file
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(
label="Questions and Agent Answers",
wrap=True,
column_widths=["10%", "30%", "30%", "30%"] # Adjust column widths for better display
)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup:
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)