Update app.py
Browse files
app.py
CHANGED
@@ -7,11 +7,12 @@ from typing import Dict, Any, List, TypedDict, Optional
|
|
7 |
from langgraph.graph import Graph, StateGraph
|
8 |
from langgraph.prebuilt import ToolNode
|
9 |
from tools import simple_search
|
|
|
|
|
10 |
print("trial")
|
11 |
# (Keep Constants as is)
|
12 |
# --- Constants ---
|
13 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
14 |
-
MODEL_API_URL = "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-7B-Instruct"
|
15 |
HF_TOKEN = os.getenv("HF_TOKEN") # Make sure to set this environment variable
|
16 |
|
17 |
class AgentState(TypedDict):
|
@@ -25,21 +26,30 @@ class AgentState(TypedDict):
|
|
25 |
|
26 |
class BasicAgent:
|
27 |
def __init__(self):
|
28 |
-
print("Initializing BasicAgent with Qwen2.5-Coder-
|
29 |
if not HF_TOKEN:
|
30 |
raise ValueError("HF_TOKEN environment variable not set. Please set your Hugging Face API token.")
|
31 |
|
32 |
-
#
|
33 |
-
self.
|
34 |
-
"
|
35 |
-
|
36 |
-
|
37 |
|
38 |
# Create the agent workflow
|
39 |
print("Creating workflow variable")
|
40 |
self.workflow = self._create_workflow()
|
41 |
print("BasicAgent initialization complete.")
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
def _create_workflow(self) -> Graph:
|
44 |
"""Create the agent workflow using LangGraph."""
|
45 |
# Create the workflow with state schema
|
@@ -79,20 +89,6 @@ class BasicAgent:
|
|
79 |
|
80 |
return workflow.compile()
|
81 |
|
82 |
-
def _call_llm_api(self, prompt: str) -> str:
|
83 |
-
"""Call the Qwen model through the Hugging Face API."""
|
84 |
-
try:
|
85 |
-
response = requests.post(
|
86 |
-
MODEL_API_URL,
|
87 |
-
headers=self.headers,
|
88 |
-
json={"inputs": prompt, "parameters": {"max_length": 200}}
|
89 |
-
)
|
90 |
-
response.raise_for_status()
|
91 |
-
return response.json()[0]["generated_text"]
|
92 |
-
except Exception as e:
|
93 |
-
print(f"Error calling LLM API: {e}")
|
94 |
-
return f"Error getting response from LLM: {str(e)}"
|
95 |
-
|
96 |
def _analyze_question(self, state: AgentState) -> AgentState:
|
97 |
"""Analyze the question and determine the next step."""
|
98 |
prompt = f"""Analyze this question and determine what needs to be done: {state['question']}
|
|
|
7 |
from langgraph.graph import Graph, StateGraph
|
8 |
from langgraph.prebuilt import ToolNode
|
9 |
from tools import simple_search
|
10 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
11 |
+
|
12 |
print("trial")
|
13 |
# (Keep Constants as is)
|
14 |
# --- Constants ---
|
15 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
16 |
HF_TOKEN = os.getenv("HF_TOKEN") # Make sure to set this environment variable
|
17 |
|
18 |
class AgentState(TypedDict):
|
|
|
26 |
|
27 |
class BasicAgent:
|
28 |
def __init__(self):
|
29 |
+
print("Initializing BasicAgent with Qwen2.5-Coder-7B-Instruct...")
|
30 |
if not HF_TOKEN:
|
31 |
raise ValueError("HF_TOKEN environment variable not set. Please set your Hugging Face API token.")
|
32 |
|
33 |
+
# Initialize LLM
|
34 |
+
self.llm = HuggingFaceEndpoint(
|
35 |
+
repo_id="Qwen/Qwen2.5-Coder-7B-Instruct",
|
36 |
+
huggingfacehub_api_token=HF_TOKEN
|
37 |
+
)
|
38 |
|
39 |
# Create the agent workflow
|
40 |
print("Creating workflow variable")
|
41 |
self.workflow = self._create_workflow()
|
42 |
print("BasicAgent initialization complete.")
|
43 |
|
44 |
+
def _call_llm_api(self, prompt: str) -> str:
|
45 |
+
"""Call the Qwen model through the Hugging Face API."""
|
46 |
+
try:
|
47 |
+
response = self.llm.invoke(prompt)
|
48 |
+
return response
|
49 |
+
except Exception as e:
|
50 |
+
print(f"Error calling LLM API: {e}")
|
51 |
+
return f"Error getting response from LLM: {str(e)}"
|
52 |
+
|
53 |
def _create_workflow(self) -> Graph:
|
54 |
"""Create the agent workflow using LangGraph."""
|
55 |
# Create the workflow with state schema
|
|
|
89 |
|
90 |
return workflow.compile()
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
def _analyze_question(self, state: AgentState) -> AgentState:
|
93 |
"""Analyze the question and determine the next step."""
|
94 |
prompt = f"""Analyze this question and determine what needs to be done: {state['question']}
|