# tools.py import pandas as pd from pathlib import Path import requests import regex as re import time import os from duckduckgo_search import DDGS from langchain_core.tools import tool DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" def _download_file_for_task(task_id: str, ext: str) -> str: """ Helper: attempt to GET the remote file for a given task_id. Saves under ./hf_files/{task_id}.{ext}. Returns the local path if successful, or an empty string if no file / download failed. """ print("reached _download_file_for_task") os.makedirs("hf_files", exist_ok=True) local_path = os.path.join("hf_files", f"{task_id}.{ext}") url = f"{DEFAULT_API_URL}/files/{task_id}" try: resp = requests.get(url, timeout=10) if resp.status_code == 200 and resp.content: print(f"Downloaded file from {url} to {local_path}") with open(local_path, "wb") as f: f.write(resp.content) return local_path except Exception: print(f"Error downloading file from {url} to {local_path}") pass # If we get here, either 404 or download error return "" @tool def image_tool(task_id: str) -> str: """ Expects: task_id is a string Returns: "OCR text + brief caption or an error message" """ print("reached image_tool") # path_or_id = state.get("ocr_path", "") for ext in ("png", "jpg", "jpeg"): candidate = _download_file_for_task(task_id, ext) if candidate: local_img = candidate break if not local_img or not os.path.exists(local_img): return { "ocr_path": None, "ocr_result": "Error: No image file found (local nonexistent or download failed)." } # 2) Read raw bytes try: with open(local_img, "rb") as f: image_bytes = f.read() except Exception as e: return f"Error reading image file: {e}" # 3) Prepare HF Inference headers hf_token = os.getenv("HF_TOKEN") if not hf_token: return "Error: HUGGINGFACE_API_KEY not set in environment." headers = {"Authorization": f"Bearer {hf_token}"} # 4) Call HF’s vision-ocr to extract text ocr_text = "" try: ocr_resp = requests.post( "https://api-inference.huggingface.co/models/google/vit-ocr", headers=headers, files={"file": image_bytes}, timeout=30 ) ocr_resp.raise_for_status() ocr_json = ocr_resp.json() # The JSON has “pages” → list of blocks → “lines” → each line has “text” lines = [] for page in ocr_json.get("pages", []): for line in page.get("lines", []): lines.append(line.get("text", "").strip()) ocr_text = "\n".join(lines).strip() or "(no visible text)" except Exception as e: ocr_text = f"Error during HF OCR: {e}" # 5) Call HF’s image-captioning to get a brief description caption = "" try: cap_resp = requests.post( "https://api-inference.huggingface.co/models/Salesforce/blip-image-captioning-base", headers=headers, files={"file": image_bytes}, timeout=30 ) cap_resp.raise_for_status() cap_json = cap_resp.json() # The response looks like: {"generated_text": "...caption..."} caption = cap_json.get("generated_text", "").strip() if not caption: caption = "(no caption returned)" except Exception as e: caption = f"Error during HF captioning: {e}" # 6) Combine OCR + caption combined = f"OCR text:\n{ocr_text}\n\nImage caption:\n{caption}" print("combined: ") return combined @tool def excel_tool(task_id: str) -> str: """ Downloads .xlsx (if any) and returns a stringified list of records from the specified sheet. No fallback to user-supplied tables. Expected keys in `task_id`: • task_id – required (used to download the file) returns: stringified list of records from the specified sheet """ print("reached excel_tool") sheet = "Sheet1" local_xlsx = _download_file_for_task(task_id, "xlsx") if not local_xlsx or not os.path.exists(local_xlsx): return "Error: Excel file not found for this task." try: xls = pd.ExcelFile(local_xlsx) df = pd.read_excel( xls, sheet_name=sheet if sheet and sheet in xls.sheet_names else xls.sheet_names[0] ) print(f"Excel file read successfully: {str(df.to_dict(orient='records'))}") return str(df.to_dict(orient="records")) except Exception as e: return f"Error reading Excel file: {e}" import openai @tool def audio_transcriber_tool(task_id: str) -> str: """ LangGraph tool for transcribing audio via OpenAI's Whisper API. Expects: task_id is a string Returns: "" Always attempts to download the file for the given path or task ID. """ print("reached audio_transcriber_tool") # Always attempt to download the file, regardless of local existence local_audio = "" for ext in ("mp3", "wav", "m4a"): candidate = _download_file_for_task(task_id, ext) if candidate: local_audio = candidate break if not local_audio or not os.path.exists(local_audio): return "Error: No audio file found (download failed)." # Send to OpenAI Whisper try: openai.api_key = os.getenv("OPENAI_API_KEY") if not openai.api_key: raise RuntimeError("OPENAI_API_KEY is not set in environment.") with open(local_audio, "rb") as audio_file: print("reached openai.audio.transcriptions.create") response = openai.audio.transcriptions.create( model="whisper-1", file=audio_file, ) print("reached response") text = response.text.strip() except Exception as e: text = f"Error during transcription: {e}" print(f"Transcripted as transcript: {text}") return text # tools.py import re import requests @tool def wikipedia_search_tool(wiki_query: str) -> str: """ LangGraph wrapper for searching Wikipedia. Expects: wiki_query is a non‐empty string. Returns: text summary of first matching page or an error message>" If no valid wiki_query is provided, returns {}. """ print("reached wikipedia search tool") query = wiki_query if not query: return {} try: # 1) Use the MediaWiki API to search for page titles matching the query search_params = { "action": "query", "list": "search", "srsearch": query, "format": "json", "utf8": 1 } search_resp = requests.get("https://en.wikipedia.org/w/api.php", params=search_params, timeout=10) search_resp.raise_for_status() search_data = search_resp.json() search_results = search_data.get("query", {}).get("search", []) # print("wikipedia: search_results",search_results) if not search_results: print(f"No Wikipedia page found for '{query}'.") return f"No Wikipedia page found for '{query}'." # 2) Take the first search result's title first_title = search_results[0].get("title", "") if not first_title: print("Unexpected format from Wikipedia search.") return "Unexpected format from Wikipedia search." # 3) Fetch the page summary for that title via the REST summary endpoint title_for_url = requests.utils.requote_uri(first_title) summary_url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{title_for_url}" summary_resp = requests.get(summary_url, timeout=10) summary_resp.raise_for_status() summary_data = summary_resp.json() # 4) Extract either the "extract" field or a fallback message summary_text = summary_data.get("extract") if not summary_text: summary_text = summary_data.get("description", "No summary available.") print(f"Title: {first_title}\n\n{summary_text}") return f"Title: {first_title}\n\n{summary_text}" except requests.exceptions.RequestException as e: return f"Wikipedia search error: {e}" except Exception as e: return f"Unexpected error in wikipedia_search_tool: {e}" from langchain_openai import ChatOpenAI from langchain.schema import SystemMessage, HumanMessage LLM = ChatOpenAI(model_name="gpt-4.1-mini", temperature=0.2) @tool def analyze_code_tool(task_id: str) -> str: """ Either task_id OR (file + task_id) Reads the code (max 400 lines / 10 kB) and asks the LLM for: • plain-language summary • list of key functions/classes • obvious bugs or style smells Returns that analysis as a string. """ print("reached analyze_code_tool") code_txt = "" if not task_id: code_txt = "No code provided." else: path = _download_file_for_task(task_id, "py") if not path: return "Error: .py file not found for this task." code_txt = Path(path).read_text(encoding="utf-8", errors="ignore") # else: # return "Error: neither snippet nor file provided." # Truncate for safety lines = code_txt.splitlines()[:400] code_sample = "\n".join(lines)[:10_000] prompt = [ SystemMessage(content="You are a senior Python code reviewer."), HumanMessage(content=( "Please analyse the following code. " "Summarise what it does, list key functions/classes, " "and point out any obvious bugs, performance issues or style problems.\n\n" f"```python\n{code_sample}\n```" "If you can then find the output of the code and return it in the output." )) ] return LLM.invoke(prompt).content.strip() # def web_search_tool(state: AgentState) -> AgentState: # """ # Expects: state["web_search_query"] is a non‐empty string. # Returns: {"web_search_query": None, "web_search_result": }. # Retries up to 5 times on either a DuckDuckGo “202 Ratelimit” response or any exception (e.g. timeout). # """ # print("reached web_search_tool") # query = state.get("web_search_query", "") # if not query: # return {} # nothing to do # ddg = DDGS() # max_retries = 5 # result_text = "" # for attempt in range(1, max_retries + 1): # try: # result_text = str(ddg.text(query, max_results=5)) # except Exception as e: # # Network error or timeout—retry up to max_retries # if attempt < max_retries: # print(f"web_search_tool: exception '{e}', retrying in 4 seconds ({attempt}/{max_retries})") # time.sleep(4) # continue # else: # # Final attempt failed # return { # "web_search_query": None, # "web_search_result": f"Error during DuckDuckGo search: {e}" # } # # Check for DuckDuckGo rate‐limit indicator # if "202 Ratelimit" in result_text: # if attempt < max_retries: # print(f"web_search_tool: received '202 Ratelimit', retrying in 4 seconds ({attempt}/{max_retries})") # time.sleep(4) # continue # else: # # Final attempt still rate‐limited # break # # Successful response (no exception and no rate‐limit text) # break # return { # "web_search_query": None, # "web_search_result": result_text # }