import numpy as np import cv2 import gradio as gr # Load Haar Cascade classifier face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml") # Face Detection Function def detect_faces(image_np,slider): # Convert image to grayscale gray_image = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY) # Detect faces faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)) # Draw rectangles around faces for (x, y, w, h) in faces: cv2.rectangle(image_np, (x, y), (x + w, y + h), (0, 255, 0), 2) return image_np,len(faces) # slider = gr.Slider(minimum=1, maximum=2, step=.1, label="Adjust the ScaleFactor") # Create Gradio Interface iface = gr.Interface( fn=detect_faces, inputs=["image",gr.Slider(minimum=1, maximum=2, step=.1, label="Adjust the ScaleFactor")], outputs=["image",gr.Label("faces count")], title="Face Detection", description="Upload an image, and the model will detect faces and draw bounding boxes around them." ) iface.launch()