Spaces:
Runtime error
Runtime error
import gradio as gr | |
import joblib | |
import pandas as pd | |
from huggingface_hub import hf_hub_download | |
# Download model from Hugging Face Hub | |
model_path = hf_hub_download(repo_id="abhishek/autotrain-iris-xgboost", filename="model.joblib") | |
model = joblib.load(model_path) | |
# Input labels expected by the model | |
feature_names = ['feat_SepalLengthCm', 'feat_SepalWidthCm', 'feat_PetalLengthCm', 'feat_PetalWidthCm'] | |
def predict(sepal_length, sepal_width, petal_length, petal_width): | |
data = pd.DataFrame([[sepal_length, sepal_width, petal_length, petal_width]], columns=feature_names) | |
prediction = model.predict(data)[0] | |
return f"Predicted Iris Class: {prediction}" | |
# Gradio interface | |
iface = gr.Interface( | |
fn=predict, | |
inputs=[ | |
gr.Number(label="Sepal Length (cm)"), | |
gr.Number(label="Sepal Width (cm)"), | |
gr.Number(label="Petal Length (cm)"), | |
gr.Number(label="Petal Width (cm)"), | |
], | |
outputs=gr.Textbox(label="Prediction"), | |
title="Iris Species Predictor 🌸", | |
description="Enter flower features to predict the Iris species using a model trained with AutoTrain Tabular." | |
) | |
iface.launch() | |