Spaces:
Running
Running
File size: 8,246 Bytes
6244d01 c2e6d7e 6244d01 d80127a 6244d01 8c7976b 6244d01 c2e6d7e 6244d01 c2e6d7e 6244d01 d80127a 6244d01 8c7976b 6244d01 d80127a 6244d01 c2e6d7e 6244d01 8c7976b 6244d01 8c7976b 6244d01 8c7976b 6244d01 52fc803 6244d01 52fc803 bc34cae 6244d01 8c7976b 6244d01 d80127a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
"""
Text-to-video functionality handler for AI-Inferoxy AI Hub.
Handles text-to-video generation with multiple providers.
"""
import os
import gradio as gr
import tempfile
import io
from concurrent.futures import ThreadPoolExecutor, TimeoutError as FutureTimeoutError
from huggingface_hub import InferenceClient
from huggingface_hub.errors import HfHubHTTPError
from requests.exceptions import ConnectionError
from hf_token_utils import get_proxy_token, report_token_status
from utils import (
validate_proxy_key,
format_error_message,
format_success_message,
)
# Timeout configuration for video generation
VIDEO_GENERATION_TIMEOUT = 600 # up to 10 minutes, videos can be slow
def generate_video(
prompt: str,
model_name: str,
provider: str,
num_inference_steps: int | None = None,
guidance_scale: float | None = None,
seed: int | None = None,
client_name: str | None = None,
):
"""
Generate a video using the specified model and provider through AI-Inferoxy.
Returns (video_bytes_or_url, status_message)
"""
# Validate proxy API key
is_valid, error_msg = validate_proxy_key()
if not is_valid:
return None, error_msg
proxy_api_key = os.getenv("PROXY_KEY")
token_id = None
try:
# Get token from AI-Inferoxy proxy server with timeout handling
print(f"π Video: Requesting token from proxy...")
token, token_id = get_proxy_token(api_key=proxy_api_key)
print(f"β
Video: Got token: {token_id}")
print(f"π¬ Video: Using model='{model_name}', provider='{provider}'")
# Create client with specified provider
client = InferenceClient(
provider=provider,
api_key=token
)
# Prepare generation parameters
generation_params: dict = {
"model": model_name,
"prompt": prompt,
}
if num_inference_steps is not None:
generation_params["num_inference_steps"] = num_inference_steps
if guidance_scale is not None:
generation_params["guidance_scale"] = guidance_scale
if seed is not None and seed != -1:
generation_params["seed"] = seed
print(f"π‘ Video: Making generation request with {VIDEO_GENERATION_TIMEOUT}s timeout...")
# Create generation function for timeout handling
def generate_video_task():
return client.text_to_video(**generation_params)
# Execute with timeout using ThreadPoolExecutor
with ThreadPoolExecutor(max_workers=1) as executor:
future = executor.submit(generate_video_task)
try:
video = future.result(timeout=VIDEO_GENERATION_TIMEOUT)
except FutureTimeoutError:
future.cancel()
raise TimeoutError(f"Video generation timed out after {VIDEO_GENERATION_TIMEOUT} seconds")
print(f"ποΈ Video: Generation completed! Type: {type(video)}")
# Convert output to a path or URL Gradio can handle
video_output = _coerce_video_output(video)
# Report successful token usage
if token_id:
report_token_status(token_id, "success", api_key=proxy_api_key, client_name=client_name)
return video_output, format_success_message("Video generated", f"using {model_name} on {provider}")
except ConnectionError as e:
error_msg = f"Cannot connect to AI-Inferoxy server: {str(e)}"
print(f"π Video connection error: {error_msg}")
if token_id:
report_token_status(token_id, "error", error_msg, api_key=proxy_api_key, client_name=client_name)
return None, format_error_message("Connection Error", "Unable to connect to the proxy server. Please check if it's running.")
except TimeoutError as e:
error_msg = f"Video generation timed out: {str(e)}"
print(f"β° Video timeout: {error_msg}")
if token_id:
report_token_status(token_id, "error", error_msg, api_key=proxy_api_key, client_name=client_name)
return None, format_error_message("Timeout Error", f"Video generation took too long (>{VIDEO_GENERATION_TIMEOUT//60} minutes). Try a shorter prompt.")
except HfHubHTTPError as e:
error_msg = str(e)
print(f"π€ Video HF error: {error_msg}")
if token_id:
report_token_status(token_id, "error", error_msg, api_key=proxy_api_key, client_name=client_name)
if "401" in error_msg:
return None, format_error_message("Authentication Error", "Invalid or expired API token. The proxy will provide a new token on retry.")
elif "402" in error_msg:
return None, format_error_message("Quota Exceeded", "API quota exceeded. The proxy will try alternative providers.")
elif "429" in error_msg:
return None, format_error_message("Rate Limited", "Too many requests. Please wait a moment and try again.")
else:
return None, format_error_message("HuggingFace API Error", error_msg)
except Exception as e:
error_msg = str(e)
print(f"β Video unexpected error: {error_msg}")
if token_id:
report_token_status(token_id, "error", error_msg, api_key=proxy_api_key)
return None, format_error_message("Unexpected Error", f"An unexpected error occurred: {error_msg}")
def handle_video_generation(prompt_val, model_val, provider_val, steps_val, guidance_val, seed_val, hf_token: gr.OAuthToken = None, hf_profile: gr.OAuthProfile = None):
"""
Handle text-to-video generation request with validation and org access.
"""
if not prompt_val or not prompt_val.strip():
return None, format_error_message("Validation Error", "Please enter a prompt for video generation")
access_token = getattr(hf_token, "token", None) if hf_token is not None else None
username = getattr(hf_profile, "username", None) if hf_profile is not None else None
if not access_token:
return None, format_error_message("Access Required", "Please sign in with Hugging Face (sidebar Login button).")
return generate_video(
prompt=prompt_val.strip(),
model_name=model_val,
provider=provider_val,
num_inference_steps=steps_val if steps_val is not None else None,
guidance_scale=guidance_val if guidance_val is not None else None,
seed=seed_val if seed_val is not None else None,
client_name=username,
)
def _coerce_video_output(value):
"""Coerce various return types (bytes, str path/URL, BytesIO) into a filepath/URL for gr.Video."""
# Case 1: Direct URL or existing file path
if isinstance(value, str):
if value.startswith("http://") or value.startswith("https://"):
return value
if os.path.exists(value):
return value
# Unknown string; fall through to save as file
# Case 2: Bytes-like content
if isinstance(value, (bytes, bytearray)):
data = bytes(value)
suffix = _guess_video_suffix(data)
return _write_temp_video(data, suffix)
# Case 3: File-like object
if isinstance(value, io.IOBase) or hasattr(value, "read"):
try:
data = value.read()
if isinstance(data, (bytes, bytearray)):
suffix = _guess_video_suffix(data)
return _write_temp_video(bytes(data), suffix)
except Exception:
pass
# Fallback: save string representation for debugging
debug_bytes = str(type(value)).encode("utf-8")
return _write_temp_video(debug_bytes, ".mp4")
def _write_temp_video(data: bytes, suffix: str) -> str:
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=suffix)
try:
tmp.write(data)
tmp.flush()
finally:
tmp.close()
return tmp.name
def _guess_video_suffix(data: bytes) -> str:
header = data[:64]
# MP4 often contains 'ftyp' box near start
if b"ftyp" in header:
return ".mp4"
# WebM/Matroska magic number starts with 0x1A45DFA3 and often contains 'webm'
if header.startswith(b"\x1aE\xdf\xa3") or b"webm" in header.lower():
return ".webm"
# Default to mp4
return ".mp4"
|