# app.py
import gradio as gr
import torch
import plotly.express as px
import numpy as np
import pandas as pd
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.decomposition import PCA
from transformers import AutoTokenizer, AutoModel
# Load model once
model_name = "karina-zadorozhny/ume"
model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
model.eval()
# Load all 3 tokenizers
tokenizer_aa = AutoTokenizer.from_pretrained(model_name, subfolder="tokenizer_amino_acid", trust_remote_code=True)
tokenizer_nt = AutoTokenizer.from_pretrained(model_name, subfolder="tokenizer_nucleotide", trust_remote_code=True)
tokenizer_sm = AutoTokenizer.from_pretrained(model_name, subfolder="tokenizer_smiles", trust_remote_code=True)
def detect_modality(seq):
seq = seq.strip().upper()
if all(c in "ATGCUN" for c in seq): # DNA/RNA
return "nucleotide"
elif all(c in "ACDEFGHIKLMNPQRSTVWYBXZJUO" for c in seq): # Protein
return "amino_acid"
else:
return "smiles"
def compute_embeddings(sequences):
embeddings = []
for seq in sequences:
modality = detect_modality(seq)
if modality == "amino_acid":
tokenizer = tokenizer_aa
elif modality == "nucleotide":
tokenizer = tokenizer_nt
else:
tokenizer = tokenizer_sm
inputs = tokenizer([seq], return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
emb = model(inputs["input_ids"].unsqueeze(1), inputs["attention_mask"].unsqueeze(1))
embeddings.append(emb.squeeze(0).squeeze(0).numpy())
return np.vstack(embeddings)
def visualize_embeddings(sequences):
embeddings = compute_embeddings(sequences)
# PCA for 2D and 3D
pca_2d = PCA(n_components=2).fit_transform(embeddings)
pca_3d = PCA(n_components=3).fit_transform(embeddings)
df_2d = pd.DataFrame(pca_2d, columns=["PC1", "PC2"])
df_2d["Sequence"] = sequences
df_3d = pd.DataFrame(pca_3d, columns=["X", "Y", "Z"])
df_3d["Sequence"] = sequences
fig_2d = px.scatter(df_2d, x="PC1", y="PC2", text="Sequence",
title="2D PCA of UME Embeddings", color="Sequence",
color_discrete_sequence=px.colors.qualitative.Bold)
fig_3d = px.scatter_3d(df_3d, x="X", y="Y", z="Z", text="Sequence",
title="3D PCA of UME Embeddings", color="Sequence",
color_discrete_sequence=px.colors.qualitative.Vivid)
return fig_2d, fig_3d
def similarity_matrix(sequences):
embeddings = compute_embeddings(sequences)
sim_matrix = cosine_similarity(embeddings)
sim_df = pd.DataFrame(sim_matrix, index=sequences, columns=sequences)
fig = px.imshow(sim_df, text_auto=True, color_continuous_scale='Viridis',
title="Cosine Similarity Matrix")
return fig
description = """
# ๐งฌ UME Explorer: Biosequence Embedding Playground
Welcome to **UME Explorer**, an interactive space to explore representations of molecules using the UME model.
Paste in your DNA, amino acid, or SMILES sequences and:
- โจ Visualize embeddings in 2D and 3D
- ๐ฌ Explore pairwise similarities
- ๐จ Enjoy colorful, educational plots!
> **Tip**: Keep input sequences short and between 3โ20 items for better visuals on CPU.
"""
with gr.Blocks(theme=gr.themes.Monochrome(), css="footer {display: none}") as demo:
gr.Markdown(description)
gr.Markdown("""
โน๏ธ How sequence type is detected:
- ๐งฌ Nucleotide (DNA/RNA): Only uses A, T, G, C, U, N
- ๐น Protein (Amino Acid): Includes letters like M, K, V, L, etc.
- ๐งช SMILES (Chemical): Includes characters like =, (, ), C, O, etc.
๐ Detection is automatic. You can mix sequence types in one run!
""")
with gr.Row():
seq_input = gr.Textbox(lines=8, placeholder="Enter sequences, one per line...", label="Input Sequences")
submit_btn = gr.Button("Compute Embeddings & Visualize")
with gr.Row():
out2d = gr.Plot(label="2D Plot")
out3d = gr.Plot(label="3D Plot")
sim_out = gr.Plot(label="Similarity Heatmap")
def process_input(text):
seqs = [s.strip() for s in text.splitlines() if s.strip()]
fig2d, fig3d = visualize_embeddings(seqs)
sim_fig = similarity_matrix(seqs)
return fig2d, fig3d, sim_fig
submit_btn.click(fn=process_input, inputs=seq_input, outputs=[out2d, out3d, sim_out])
demo.launch()