File size: 2,042 Bytes
22ecc00
6606691
22ecc00
 
 
7d75000
 
6606691
22ecc00
 
4d69047
22ecc00
 
 
b80445d
 
 
 
22ecc00
 
 
 
b80445d
22ecc00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b80445d
22ecc00
 
 
b80445d
 
22ecc00
 
 
 
 
 
 
 
6606691
22ecc00
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import gradio as gr
import numpy as np
import urllib.request
from PIL import Image
from io import BytesIO
from tensorflow.keras.preprocessing import image
from tensorflow.keras.models import load_model

# Load the model
model = load_model("my_model.h5", compile=False)

# Common prediction function
def classify_pil_image(pil_img):
    img = pil_img.resize((224, 224))
    img = image.img_to_array(img)
    img = np.expand_dims(img, axis=0)
    img = img / 255.0
    prediction = model.predict(img)[0]
    return {
        "CART": float(prediction[0]),
        "NSFW": float(prediction[1]),
        "SFW": float(prediction[2])
    }

# From file input (or example)
def classify_uploaded_image(file):
    try:
        pil_img = Image.fromarray(file).convert("RGB")
        return classify_pil_image(pil_img)
    except Exception as e:
        return {"error": f"Upload error: {str(e)}"}

# From URL input
def classify_from_url(url):
    try:
        response = urllib.request.urlopen(url)
        img = Image.open(BytesIO(response.read())).convert("RGB")
        return classify_pil_image(img)
    except Exception as e:
        return {"error": f"URL error: {str(e)}"}

# Example images for file-based interface
examples = [[f"example{i}.jpg"] for i in range(1, 9)]

# Upload tab (classic layout with examples)
upload_interface = gr.Interface(
    fn=classify_uploaded_image,
    inputs=gr.Image(type="numpy", label="Upload or drag an image"),
    outputs=gr.Label(num_top_classes=3, label="Prediction"),
    examples=examples,
    title="Simple NSFW/SFW/CART Classifier",
    allow_flagging="never",
    cache_examples=False
)

# URL tab (simple textbox interface)
url_interface = gr.Interface(
    fn=classify_from_url,
    inputs=gr.Textbox(label="Paste Image URL"),
    outputs=gr.Label(num_top_classes=3, label="Prediction"),
    allow_flagging="never",
    cache_examples=False
)

# Tabs wrapper to combine them
gr.TabbedInterface(
    [upload_interface, url_interface],
    tab_names=["πŸ“€ Upload Image", "🌐 Image URL"]
).launch()