Spaces:
Runtime error
Runtime error
import gradio as gr | |
from PIL import Image, ImageEnhance | |
import os | |
from dotenv import load_dotenv | |
from simple_salesforce import Salesforce | |
from datetime import datetime | |
import hashlib | |
import shutil | |
import base64 | |
import pytz | |
import logging | |
# Setup logging | |
logging.basicConfig( | |
filename="construction_analyzer.log", | |
level=logging.INFO, | |
format="%(asctime)s - %(levelname)s - %(message)s", | |
datefmt="%Y-%m-%d %H:%M:%S" | |
) | |
# Load environment variables | |
logging.info("Loading environment variables") | |
load_dotenv() | |
SF_USERNAME = os.getenv("SF_USERNAME") | |
SF_PASSWORD = os.getenv("SF_PASSWORD") | |
SF_SECURITY_TOKEN = os.getenv("SF_SECURITY_TOKEN") | |
# Validate Salesforce credentials | |
if not all([SF_USERNAME, SF_PASSWORD, SF_SECURITY_TOKEN]): | |
logging.error("Missing Salesforce credentials") | |
raise ValueError("Missing Salesforce credentials. Set SF_USERNAME, SF_PASSWORD, and SF_SECURITY_TOKEN in environment variables.") | |
logging.info("Salesforce credentials validated successfully") | |
# Initialize Salesforce connection | |
try: | |
logging.info("Attempting Salesforce connection") | |
sf = Salesforce( | |
username=SF_USERNAME, | |
password=SF_PASSWORD, | |
security_token=SF_SECURITY_TOKEN, | |
domain='login' | |
) | |
logging.info("Salesforce connection established successfully") | |
except Exception as e: | |
logging.error(f"Salesforce connection failed: {str(e)}") | |
raise | |
# Milestone definitions with completed and pending tasks | |
milestone_data = { | |
"Excavation and Foundation": { | |
"percentage": 10, | |
"completed": ["Site clearing", "Excavation", "Foundation pouring"], | |
"pending": ["Structural framework", "Roofing", "Exterior work", "Interior work", "Final inspection"] | |
}, | |
"Structural Framework": { | |
"percentage": 40, | |
"completed": ["Site clearing", "Excavation", "Foundation pouring", "Structural columns and beams"], | |
"pending": ["Roofing", "Exterior work", "Interior work", "Final inspection"] | |
}, | |
"Roofing": { | |
"percentage": 70, | |
"completed": ["Site clearing", "Excavation", "Foundation pouring", "Structural columns and beams", "Roof installation"], | |
"pending": ["Exterior work", "Interior work", "Final inspection"] | |
}, | |
"Exterior Work": { | |
"percentage": 85, | |
"completed": ["Site clearing", "Excavation", "Foundation pouring", "Structural columns and beams", "Roof installation", "Exterior walls", "Windows and doors"], | |
"pending": ["Interior work", "Final inspection"] | |
}, | |
"Interior Work": { | |
"percentage": 95, | |
"completed": ["Site clearing", "Excavation", "Foundation pouring", "Structural columns and beams", "Roof installation", "Exterior walls", "Windows and doors", "Interior plumbing", "Electrical work", "Drywall and painting"], | |
"pending": ["Final inspection"] | |
}, | |
"Final Completion": { | |
"percentage": 100, | |
"completed": ["Site clearing", "Excavation", "Foundation pouring", "Structural columns and beams", "Roof installation", "Exterior walls", "Windows and doors", "Interior plumbing", "Electrical work", "Drywall and painting", "Final inspection"], | |
"pending": [] | |
} | |
} | |
# Adjust the timezone to Asia/Kolkata | |
local_timezone = pytz.timezone("Asia/Kolkata") | |
# Enhanced mock AI model simulating Grok-like analysis | |
def mock_ai_model(image): | |
logging.info("Analyzing image for construction progress") | |
img = image.convert("RGB") | |
max_size = 1024 | |
img.thumbnail((max_size, max_size), Image.Resampling.LANCZOS) | |
# Enhance contrast and brightness for feature detection | |
enhancer = ImageEnhance.Contrast(img) | |
img_enhanced = enhancer.enhance(2.0) | |
enhancer = ImageEnhance.Brightness(img_enhanced) | |
img_enhanced = enhancer.enhance(1.2) | |
# Analyze image features | |
img_data = list(img_enhanced.getdata()) | |
total_pixels = len(img_data) | |
brightness_avg = sum(sum(pixel) / 3 for pixel in img_data) / total_pixels | |
color_variation = max(max(pixel) - min(pixel) for pixel in img_data) | |
# Edge detection | |
edge_count = 0 | |
width, height = img_enhanced.size | |
for x in range(width - 1): | |
for y in range(height - 1): | |
r, g, b = img_enhanced.getpixel((x, y)) | |
r_next, g_next, b_next = img_enhanced.getpixel((x + 1, y + 1)) | |
if abs(r - r_next) > 50 or abs(g - g_next) > 50 or abs(b - b_next) > 50: | |
edge_count += 1 | |
edge_ratio = edge_count / (width * height) | |
# Simulate Grok-like reasoning for milestone detection | |
if brightness_avg > 220 and color_variation < 15 and edge_ratio < 0.05: | |
milestone = "Final Completion" | |
confidence = 0.95 | |
elif brightness_avg > 180 and edge_ratio < 0.1: | |
milestone = "Interior Work" | |
confidence = 0.90 | |
elif brightness_avg > 150 and edge_ratio < 0.2: | |
milestone = "Exterior Work" | |
confidence = 0.88 | |
elif brightness_avg > 120 and edge_ratio < 0.3: | |
milestone = "Roofing" | |
confidence = 0.85 | |
elif brightness_avg > 90 and edge_ratio < 0.4: | |
milestone = "Structural Framework" | |
confidence = 0.82 | |
else: | |
milestone = "Excavation and Foundation" | |
confidence = 0.80 | |
completed_tasks = milestone_data[milestone]["completed"] | |
pending_tasks = milestone_data[milestone]["pending"] | |
percentage = milestone_data[milestone]["percentage"] | |
logging.info(f"Image analyzed: Milestone={milestone}, Percentage={percentage}, Confidence={confidence}") | |
return milestone, percentage, confidence, completed_tasks, pending_tasks | |
# Process images and upload to Salesforce | |
def process_image(images, project_name, project_type): | |
logging.info(f"Processing {len(images)} images for project {project_name}") | |
try: | |
if not images: | |
logging.warning("No images uploaded") | |
return "<p style='color: red;'>Error: Please upload at least one image.</p>", "Pending", "", "", 0 | |
if not project_name: | |
logging.warning("Project name missing") | |
return "<p style='color: red;'>Error: Project Name is required.</p>", "Pending", "", "", 0 | |
results = [] | |
image_urls = [] | |
all_percentages = [] | |
all_milestones = set() | |
all_completed_tasks = set() | |
all_pending_tasks = set() | |
dominant_milestone = None | |
dominant_image_url = None | |
max_confidence = 0 | |
for idx, image_path in enumerate(images): | |
try: | |
img = Image.open(image_path) | |
milestone, percent_complete, confidence, completed_tasks, pending_tasks = mock_ai_model(img) | |
# Save image locally | |
upload_dir = "public_uploads" | |
os.makedirs(upload_dir, exist_ok=True) | |
unique_id = datetime.now().strftime("%Y%m%d%H%M%S") | |
image_filename = f"{unique_id}_{idx}_{os.path.basename(image_path)}" | |
saved_image_path = os.path.join(upload_dir, image_filename) | |
shutil.copy(image_path, saved_image_path) | |
# Upload to Salesforce | |
with open(saved_image_path, 'rb') as image_file: | |
image_data = base64.b64encode(image_file.read()).decode('utf-8') | |
content_version = { | |
'Title': image_filename, | |
'PathOnClient': saved_image_path, | |
'VersionData': image_data | |
} | |
try: | |
content_version_result = sf.ContentVersion.create(content_version) | |
content_version_id = content_version_result['id'] | |
file_url = f"https://sathkruthatechsolutionspri8-dev-ed.develop.lightning.force.com/{content_version_id}" | |
image_urls.append(file_url) | |
logging.info(f"Image {idx+1} uploaded to Salesforce: {file_url}") | |
except Exception as e: | |
logging.error(f"Image {idx+1} upload failed: {str(e)}") | |
results.append(f"Image {idx+1}: Failed to upload to Salesforce - {str(e)}") | |
continue | |
if percent_complete > (all_percentages[0] if all_percentages else -1): | |
dominant_milestone = milestone | |
dominant_image_url = file_url | |
all_percentages.append(percent_complete) | |
all_milestones.add(milestone) | |
all_completed_tasks.update(completed_tasks) | |
all_pending_tasks.update(pending_tasks) | |
if confidence > max_confidence: | |
max_confidence = confidence | |
results.append( | |
f"Image {idx+1}: {milestone} - {percent_complete}% completion (Confidence: {confidence})<br>" | |
f"<strong>Completed:</strong> {', '.join(completed_tasks)}<br>" | |
f"<strong>Pending:</strong> {', '.join(pending_tasks) if pending_tasks else 'None'}" | |
) | |
except Exception as e: | |
logging.error(f"Image {idx+1} processing failed: {str(e)}") | |
results.append(f"Image {idx+1}: Error processing image - {str(e)}") | |
continue | |
if not results: | |
logging.warning("No images processed successfully") | |
return "<p style='color: red;'>Error: No images were successfully processed.</p>", "Failure", "", "", 0 | |
total_percent_complete = round(sum(all_percentages) / len(all_percentages), 2) | |
all_milestones_str = ", ".join(all_milestones) | |
all_completed_tasks_str = ", ".join(sorted(all_completed_tasks)) | |
all_pending_tasks_str = ", ".join(sorted(all_pending_tasks)) if all_pending_tasks else "None" | |
# Create Salesforce record | |
now = datetime.now(local_timezone) | |
local_time = now.strftime("%Y-%m-%dT%H:%M:%S") + now.strftime("%z")[:-2] + ":" + now.strftime("%z")[-2:] | |
record = { | |
"Name__c": project_name, | |
"Project_Type__c": project_type, | |
"Completion_Percentage__c": total_percent_complete, | |
"Current_Milestone__c": all_milestones_str, | |
"Last_Updated_On__c": local_time, | |
"Upload_Status__c": "Success", | |
"Comments__c": ( | |
f"Project {project_name} at {total_percent_complete}% completion. " | |
f"Completed tasks: {all_completed_tasks_str}. " | |
f"Pending tasks: {all_pending_tasks_str}." | |
), | |
"Last_Updated_Image__c": dominant_image_url or "" | |
} | |
try: | |
sf.Construction__c.create(record) | |
logging.info(f"Salesforce record created for project {project_name}") | |
except Exception as e: | |
logging.error(f"Failed to create Salesforce record: {str(e)}") | |
return f"<p style='color: red;'>Error: Failed to update Salesforce - {str(e)}</p>", "Failure", "", "", 0 | |
# Format output | |
output_html = "<div class='output'>" | |
output_html += "<h3>Processing Results:</h3><ul>" | |
for result in results: | |
if 'Error' in result or 'Failed' in result: | |
output_html += f"<li class='error'>{result}</li>" | |
else: | |
output_html += f"<li class='success'>{result}</li>" | |
output_html += "</ul>" | |
output_html += f"<h3>Project Summary:</h3>" | |
output_html += f"<p><strong>Project:</strong> {project_name} ({project_type})</p>" | |
output_html += f"<p><strong>Total Completion:</strong> {total_percent_complete}%</p>" | |
output_html += f"<p><strong>Milestones Detected:</strong> {all_milestones_str}</p>" | |
output_html += f"<p><strong>Completed Tasks:</strong> {all_completed_tasks_str}</p>" | |
output_html += f"<p><strong>Pending Tasks:</strong> {all_pending_tasks_str}</p>" | |
output_html += f"<p><strong>Max Confidence:</strong> {max_confidence}</p>" | |
output_html += f"<p><strong>Note:</strong> Only the image with the highest completion percentage is stored in Salesforce.</p>" | |
output_html += "</div>" | |
return output_html, "Success", "", f"Max Confidence: {max_confidence}", f"{total_percent_complete}%" | |
except Exception as e: | |
logging.error(f"Processing failed: {str(e)}") | |
return f"<p style='color: red;'>Error: {str(e)}</p>", "Failure", "", "", "0%" | |
# Gradio UI | |
with gr.Blocks(css=""" | |
.gradio-container { | |
background-color: #f9f9f9; | |
font-family: 'Roboto', sans-serif; | |
padding: 20px; | |
} | |
.title { | |
color: #34495e; | |
font-size: 30px; | |
text-align: center; | |
font-weight: bold; | |
margin-bottom: 25px; | |
text-transform: uppercase; | |
} | |
.gradio-row { | |
text-align: center; | |
max-width: 800px; | |
margin: 0 auto; | |
} | |
.output { | |
text-align: left; | |
margin-top: 20px; | |
padding: 30px; | |
background-color: #ffffff; | |
border-radius: 15px; | |
box-shadow: 0 8px 16px rgba(0, 0, 0, 0.1); | |
max-width: 800px; | |
margin-left: auto; | |
margin-right: auto; | |
} | |
.output h3 { | |
color: #2c3e50; | |
font-size: 22px; | |
font-weight: bold; | |
margin-bottom: 20px; | |
} | |
.output ul { | |
list-style-type: none; | |
padding: 0; | |
} | |
.output li { | |
padding: 14px; | |
margin-bottom: 18px; | |
border-radius: 10px; | |
font-size: 16px; | |
transition: background-color 0.3s ease; | |
} | |
.output li.success { | |
background-color: #27ae60; | |
color: white; | |
} | |
.output li.error { | |
background-color: #e74c3c; | |
color: white; | |
} | |
.button { | |
display: block; | |
margin: 25px auto; | |
background-color: #3498db; | |
color: white; | |
border: none; | |
padding: 15px 30px; | |
border-radius: 10px; | |
cursor: pointer; | |
font-size: 18px; | |
transition: background-color 0.3s ease; | |
} | |
.button:hover { | |
background-color: #2980b9; | |
} | |
.input { | |
text-align: center; | |
max-width: 800px; | |
margin: 0 auto; | |
} | |
""") as demo: | |
gr.Markdown("<h1 class='title'>Construction Progress Analyzer</h1>") | |
with gr.Row(): | |
project_type_input = gr.Dropdown(label="Project Type", choices=["House", "Apartment"], value="House") | |
project_name_input = gr.Textbox(label="Project Name (Required)", placeholder="e.g. Project_12345") | |
image_input = gr.File( | |
file_count="multiple", | |
file_types=["image"], | |
label="Upload Construction Site Photos (JPG/PNG, ≤20MB each)" | |
) | |
submit_button = gr.Button("Process Images") | |
output_html = gr.HTML(label="Result") | |
submit_button.click( | |
fn=process_image, | |
inputs=[image_input, project_name_input, project_type_input], | |
outputs=[output_html] | |
) | |
logging.info("Launching Gradio interface") | |
demo.launch() |