import cv2 import numpy as np def recognize_face(image): try: # Convert image to grayscale gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Load OpenCV's pre-trained Haar Cascade for face detection face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') if face_cascade.empty(): raise Exception("Failed to load Haar Cascade classifier") # Detect faces in the image faces = face_cascade.detectMultiScale(gray, scaleFactor=1.3, minNeighbors=5) if len(faces) > 0: return "Customer" # Face detected, assume it's a customer else: return "Unknown" # No face detected except Exception as e: print(f"Error in face recognition: {e}") return "Error reading face"