Spaces:
Build error
Build error
File size: 31,752 Bytes
2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 b1ae1b2 2ea1d75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 |
import marimo
__generated_with = "0.14.10"
app = marimo.App(width="medium")
@app.cell
def _():
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
import altair as alt
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.preprocessing import StandardScaler
import joblib
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
import warnings
return (
DataLoader,
LinearRegression,
StandardScaler,
TensorDataset,
alt,
fetch_california_housing,
joblib,
mean_absolute_error,
mean_squared_error,
nn,
np,
optim,
pd,
px,
r2_score,
torch,
train_test_split,
)
@app.cell
def _():
import marimo as mo
return (mo,)
@app.cell
def _(mo):
mo.md(r"""# eXplainable AI (XAI)""")
return
@app.cell
def _(mo):
mo.md(
"""
## What is XAI?
XAI refers to a set of techniques and methods that make the decision-making process of AI models transparent, understandable, and interpretable to humans.
"""
)
return
@app.cell
def _(mo):
mo.md(r"""When the complexity of a model increases, you get better accuracy, but then explaining how your model makes its decisions becomes harder. The feild of XAI tries to find the best trade-off between explainability and accuracy.""")
return
@app.cell
def _(mo):
mo.image("/Users/negarvahid/Desktop/intorduction_to_xai/increasing_complexity.png")
return
@app.cell
def _(mo):
mo.md(r"""## What is Interpretibility?""")
return
@app.cell
def _(mo):
mo.md(r"""You call a model *interpretable* when you can understand the internal mechanisms of a model.""")
return
@app.cell
def _(mo):
mo.md(r"""Let’s say you’re predicting someone’s risk of heart disease. If you use a linear regression model, you’ll get a clean equation like:""")
return
@app.cell
def _(mo):
mo.md(
r"""
$$
\text{Risk} = 0.3 \cdot \text{Age} + 0.5 \cdot \text{Cholesterol} + 0.7 \cdot \text{SmokingStatus}
$$
"""
)
return
@app.cell
def _(mo):
mo.md(r"""This model is interpretable. You can look at the numbers and instantly understand how each feature contributes to the prediction. You don’t need any extra tools, as **it’s transparent by design**.""")
return
@app.cell
def _(mo):
mo.md(r"""## What is Explainbility?""")
return
@app.cell
def _(mo):
mo.md(r"""Now imagine you use a deep neural network for the same task. The network might give highly accurate predictions, but its internal workings are opaque due to multiple hidden layers and non-linear transformations. You can't just "look" at the model and understand how it made a decision.""")
return
@app.cell
def _(mo):
mo.image("/Users/negarvahid/Desktop/intorduction_to_xai/Screenshot 2025-07-12 at 16.05.55.png")
return
@app.cell
def _(mo):
mo.md(
r"""
To make sense of this black-box model, you might use a tool like SHAP (SHapley Additive exPlanations) to show that for a particular patient, high cholesterol and smoking status increased their predicted risk by specific amounts. This is **explainability**
You're using a tool to externally explain the behavior of a complex, non-interpretable model.
"""
)
return
@app.cell
def _(mo):
mo.md(r"""#The California Housing Prices Dataset""")
return
@app.cell
def _(mo):
mo.md(
r"""
The California Housing Prices Dataset a tabular dataset that contains information collected from the 1990 California census, aimed at predicting the median house value (in USD) for various districts across California, based on features like:
- Median income of residents
- Average number of rooms per household
- Average number of bedrooms
- Population and household size
- Latitude and longitude
- Housing median age
-
Total instances: 20,640 rows (each one represents a housing block group)
Number of features: 8 input features + 1 target value (median house price)
"""
)
return
@app.cell
def _(mo):
mo.md(
r"""
### Load the dataset
Run the following cell to load the dataset:
"""
)
return
@app.cell
def _():
return
@app.cell
def _(fetch_california_housing, pd):
def load_data():
california = fetch_california_housing()
data = pd.DataFrame(california.data, columns=california.feature_names)
data['target'] = california.target
return data
data = load_data()
return data, load_data
@app.cell
def _(data):
data
return
@app.cell
def _(mo):
mo.md(
r"""
### Visualize the Dataset:
It would be great to visualize the dataset!
Run the cell below to get an interactive plot of the dataset:
"""
)
return
@app.cell(hide_code=True)
def _(alt, data, mo):
selection = alt.selection_point(fields=['index'], name='select')
data_sample = data.sample(n=200, random_state=42)
location_chart = mo.ui.altair_chart(
alt.Chart(data_sample.reset_index()).mark_circle(size=60).encode(
x=alt.X('Longitude:Q', title='Longitude', scale=alt.Scale(domain=[-124.5, -114.0])),
y=alt.Y('Latitude:Q', title='Latitude', scale=alt.Scale(domain=[32.0, 42.5])),
color=alt.Color('target:Q',
scale=alt.Scale(scheme='viridis', domain=[0, 5]),
title='Price ($100k)',
legend=alt.Legend(orient='top', titleFontSize=14, labelFontSize=12)),
size=alt.Size('AveBedrms:Q',
scale=alt.Scale(range=[100, 400], domain=[0, 2]),
title='Avg Bedrooms',
legend=alt.Legend(orient='top', titleFontSize=14, labelFontSize=12)),
tooltip=[
alt.Tooltip('Longitude:Q', title='Longitude', format='.3f'),
alt.Tooltip('Latitude:Q', title='Latitude', format='.3f'),
alt.Tooltip('target:Q', title='Price ($100k)', format='.2f'),
alt.Tooltip('AveBedrms:Q', title='Avg Bedrooms', format='.2f'),
alt.Tooltip('MedInc:Q', title='Median Income', format='.2f'),
alt.Tooltip('HouseAge:Q', title='House Age', format='.0f'),
alt.Tooltip('AveRooms:Q', title='Avg Rooms', format='.2f'),
alt.Tooltip('Population:Q', title='Population', format='.0f'),
alt.Tooltip('AveOccup:Q', title='Avg Occupancy', format='.2f')
],
opacity=alt.condition(selection, alt.value(1), alt.value(0.7))
).add_params(selection).properties(
title='California Housing: 500 Sample Points - Location, Price & Bedrooms (Click to Select)',
width=900,
height=700
).interactive()
)
price_bedrooms_chart = mo.ui.altair_chart(
alt.Chart(data_sample.reset_index()).mark_circle(size=60).encode(
x=alt.X('AveBedrms:Q', title='Average Bedrooms', scale=alt.Scale(domain=[0, 2])),
y=alt.Y('target:Q', title='Price ($100k)', scale=alt.Scale(domain=[0, 5])),
color=alt.Color('MedInc:Q',
scale=alt.Scale(scheme='plasma', domain=[0, 15]),
title='Median Income',
legend=alt.Legend(orient='top', titleFontSize=14, labelFontSize=12)),
size=alt.Size('Population:Q',
scale=alt.Scale(range=[100, 400], domain=[0, 3000]),
title='Population',
legend=alt.Legend(orient='top', titleFontSize=14, labelFontSize=12)),
tooltip=[
alt.Tooltip('AveBedrms:Q', title='Avg Bedrooms', format='.2f'),
alt.Tooltip('target:Q', title='Price ($100k)', format='.2f'),
alt.Tooltip('MedInc:Q', title='Median Income', format='.2f'),
alt.Tooltip('Population:Q', title='Population', format='.0f'),
alt.Tooltip('Longitude:Q', title='Longitude', format='.3f'),
alt.Tooltip('Latitude:Q', title='Latitude', format='.3f'),
alt.Tooltip('HouseAge:Q', title='House Age', format='.0f'),
alt.Tooltip('AveRooms:Q', title='Avg Rooms', format='.2f'),
alt.Tooltip('AveOccup:Q', title='Avg Occupancy', format='.2f')
],
opacity=alt.condition(selection, alt.value(1), alt.value(0.7))
).add_params(selection).properties(
title='Price vs Bedrooms: 500 Sample Points - Income & Population (Click to Select)',
width=900,
height=600
).interactive()
)
mo.md(f"""
# California Housing Dataset - 500 Sample Points Analysis
**Dataset Shape:** {data.shape[0]} total rows × {data.shape[1]} columns
**Sample Size:** 500 random points (for better visualization)
**Key Features:**
- **Location**: Longitude & Latitude
- **Price**: Median house value (target) - $0-500k
- **Bedrooms**: Average number of bedrooms (AveBedrms) - 0-2
- **Income**: Median income (MedInc) - $0-15k
- **Population**: Block group population - 0-3000
- **Age**: Median house age (HouseAge)
- **Rooms**: Average rooms per household (AveRooms)
- **Occupancy**: Average household members (AveOccup)
**How to Use:** Click on any point to select it and see its data highlighted. Selected points will appear more opaque.
---
""")
mo.md("## 1. Interactive Map: Location, Price & Bedrooms")
mo.md("**500 sample points** across California. **Color = Price** (viridis scale), **Size = Number of Bedrooms**. **Click on any point to select it** - selected points become more opaque. Hover for detailed information.")
location_chart
mo.md("## 2. Price vs Bedrooms Analysis")
mo.md("**500 sample points** showing price vs bedrooms relationship. **Color = Income** (plasma scale), **Size = Population**. **Click on any point to select it** - the same selection works across both charts.")
price_bedrooms_chart
return
@app.cell(hide_code=True)
def _(data, mo, px):
def create_map_plot():
fig = px.scatter(
data,
x='Longitude',
y='Latitude',
color='target',
color_continuous_scale='viridis',
title='California Housing Prices by Location',
labels={'target': 'Price ($100k)', 'Longitude': 'Longitude', 'Latitude': 'Latitude'},
hover_data=['MedInc', 'HouseAge', 'AveRooms', 'AveBedrms', 'Population', 'AveOccup']
)
fig.update_layout(
width=800,
height=600,
title_x=0.5
)
return fig
map_plot = create_map_plot()
interactive_map = mo.ui.plotly(map_plot)
return (interactive_map,)
@app.cell
def _(interactive_map):
interactive_map
return
@app.cell(hide_code=True)
def _(
DataLoader,
LinearRegression,
StandardScaler,
TensorDataset,
fetch_california_housing,
joblib,
mean_absolute_error,
mean_squared_error,
nn,
np,
optim,
pd,
r2_score,
torch,
train_test_split,
):
class NeuralNetwork(nn.Module):
def __init__(self, input_size=8, hidden_size=64, output_size=1):
super(NeuralNetwork, self).__init__()
self.layer1 = nn.Linear(input_size, hidden_size)
self.layer2 = nn.Linear(hidden_size, hidden_size // 2)
self.layer3 = nn.Linear(hidden_size // 2, hidden_size // 4)
self.layer4 = nn.Linear(hidden_size // 4, output_size)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(0.2)
def forward(self, x):
x = self.relu(self.layer1(x))
x = self.dropout(x)
x = self.relu(self.layer2(x))
x = self.dropout(x)
x = self.relu(self.layer3(x))
x = self.layer4(x)
return x
class PyTorchModel:
def __init__(self, input_size=8, hidden_size=64, epochs=100, lr=0.001):
self.model = NeuralNetwork(input_size, hidden_size)
self.epochs = epochs
self.lr = lr
self.criterion = nn.MSELoss()
self.optimizer = optim.Adam(self.model.parameters(), lr=lr)
self.is_trained = False
def fit(self, X, y):
# Convert to PyTorch tensors
X_tensor = torch.FloatTensor(X)
y_tensor = torch.FloatTensor(y.values if hasattr(y, 'values') else y).reshape(-1, 1)
# Create data loader
dataset = TensorDataset(X_tensor, y_tensor)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
# Training loop
self.model.train()
for epoch in range(self.epochs):
total_loss = 0
for batch_X, batch_y in dataloader:
self.optimizer.zero_grad()
outputs = self.model(batch_X)
loss = self.criterion(outputs, batch_y)
loss.backward()
self.optimizer.step()
total_loss += loss.item()
if (epoch + 1) % 20 == 0:
print(f" Epoch [{epoch+1}/{self.epochs}], Loss: {total_loss/len(dataloader):.4f}")
self.is_trained = True
def predict(self, X):
if not self.is_trained:
raise ValueError("Model not trained yet!")
self.model.eval()
with torch.no_grad():
X_tensor = torch.FloatTensor(X)
predictions = self.model(X_tensor)
return predictions.numpy().flatten()
class CaliforniaHousingKaggleStyle:
def __init__(self):
self.scaler = StandardScaler()
self.feature_names = None
self.X_train = None
self.X_test = None
self.y_train = None
self.y_test = None
def load_data(self):
"""Load California Housing dataset"""
print("Loading California Housing dataset...")
california = fetch_california_housing()
# Create DataFrame
self.data = pd.DataFrame(california.data, columns=california.feature_names)
self.data['target'] = california.target
# Store feature names
self.feature_names = california.feature_names
print(f"Dataset shape: {self.data.shape}")
print(f"Features: {list(self.feature_names)}")
print(f"Target: Median house value (in $100,000s)")
return self.data
def prepare_data(self, test_size=0.2, random_state=42):
"""Prepare data for training"""
print("\n=== Data Preparation ===")
# Separate features and target
X = self.data.drop('target', axis=1)
y = self.data['target']
# Split the data
self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(
X, y, test_size=test_size, random_state=random_state
)
# Scale the features
self.X_train_scaled = self.scaler.fit_transform(self.X_train)
self.X_test_scaled = self.scaler.transform(self.X_test)
print(f"Training set shape: {self.X_train.shape}")
print(f"Test set shape: {self.X_test.shape}")
return self.X_train_scaled, self.X_test_scaled, self.y_train, self.y_test
def train_models(self):
"""Train Linear Regression and Neural Network"""
print("\n=== Training Models ===")
# Train Linear Regression
print("Training Linear Regression...")
self.linear_model = LinearRegression()
self.linear_model.fit(self.X_train_scaled, self.y_train)
print(" ✓ Linear Regression trained successfully")
# Train Neural Network
print("Training Neural Network...")
self.nn_model = PyTorchModel(epochs=100, lr=0.001)
self.nn_model.fit(self.X_train_scaled, self.y_train)
print(" ✓ Neural Network trained successfully")
def evaluate_models(self):
"""Evaluate both models"""
print("\n=== Model Evaluation ===")
# Linear Regression evaluation
y_train_pred_lr = self.linear_model.predict(self.X_train_scaled)
y_test_pred_lr = self.linear_model.predict(self.X_test_scaled)
lr_train_rmse = np.sqrt(mean_squared_error(self.y_train, y_train_pred_lr))
lr_test_rmse = np.sqrt(mean_squared_error(self.y_test, y_test_pred_lr))
lr_train_mae = mean_absolute_error(self.y_train, y_train_pred_lr)
lr_test_mae = mean_absolute_error(self.y_test, y_test_pred_lr)
lr_train_r2 = r2_score(self.y_train, y_train_pred_lr)
lr_test_r2 = r2_score(self.y_test, y_test_pred_lr)
print("Linear Regression:")
print(f" Test RMSE: {lr_test_rmse:.4f}")
print(f" Test MAE: {lr_test_mae:.4f}")
print(f" Test R²: {lr_test_r2:.4f}")
# Neural Network evaluation
y_train_pred_nn = self.nn_model.predict(self.X_train_scaled)
y_test_pred_nn = self.nn_model.predict(self.X_test_scaled)
nn_train_rmse = np.sqrt(mean_squared_error(self.y_train, y_train_pred_nn))
nn_test_rmse = np.sqrt(mean_squared_error(self.y_test, y_test_pred_nn))
nn_train_mae = mean_absolute_error(self.y_train, y_train_pred_nn)
nn_test_mae = mean_absolute_error(self.y_test, y_test_pred_nn)
nn_train_r2 = r2_score(self.y_train, y_train_pred_nn)
nn_test_r2 = r2_score(self.y_test, y_test_pred_nn)
print("\nNeural Network:")
print(f" Test RMSE: {nn_test_rmse:.4f}")
print(f" Test MAE: {nn_test_mae:.4f}")
print(f" Test R²: {nn_test_r2:.4f}")
return {
'linear_regression': {
'train_rmse': lr_train_rmse,
'test_rmse': lr_test_rmse,
'train_mae': lr_train_mae,
'test_mae': lr_test_mae,
'train_r2': lr_train_r2,
'test_r2': lr_test_r2
},
'neural_network': {
'train_rmse': nn_train_rmse,
'test_rmse': nn_test_rmse,
'train_mae': nn_train_mae,
'test_mae': nn_test_mae,
'train_r2': nn_train_r2,
'test_r2': nn_test_r2
}
}
def save_models(self):
"""Save both models and their parameters"""
print("\n=== Saving Models ===")
# Save Linear Regression
linear_model_data = {
'model': self.linear_model,
'scaler': self.scaler,
'feature_names': self.feature_names,
'parameters': {
'coef_': self.linear_model.coef_.tolist(),
'intercept_': float(self.linear_model.intercept_)
}
}
joblib.dump(linear_model_data, 'linear_regression_model.pkl')
print("Linear Regression model saved to 'linear_regression_model.pkl'")
# Save Neural Network
nn_model_data = {
'model': self.nn_model,
'scaler': self.scaler,
'feature_names': self.feature_names,
'parameters': {
'state_dict': self.nn_model.model.state_dict(),
'input_size': 8,
'hidden_size': 64,
'epochs': 100,
'lr': 0.001
}
}
joblib.dump(nn_model_data, 'neural_network_model.pkl')
print("Neural Network model saved to 'neural_network_model.pkl'")
def predict_with_linear_regression(self, sample_data):
"""Make prediction with Linear Regression"""
if isinstance(sample_data, dict):
sample_df = pd.DataFrame([sample_data])
else:
sample_df = sample_data
# Ensure all features are present
for feature in self.feature_names:
if feature not in sample_df.columns:
raise ValueError(f"Missing feature: {feature}")
# Reorder columns to match training data
sample_df = sample_df[self.feature_names]
# Scale the data
sample_scaled = self.scaler.transform(sample_df)
# Make prediction
prediction = self.linear_model.predict(sample_scaled)[0]
return prediction
def predict_with_neural_network(self, sample_data):
"""Make prediction with Neural Network"""
if isinstance(sample_data, dict):
sample_df = pd.DataFrame([sample_data])
else:
sample_df = sample_data
# Ensure all features are present
for feature in self.feature_names:
if feature not in sample_df.columns:
raise ValueError(f"Missing feature: {feature}")
# Reorder columns to match training data
sample_df = sample_df[self.feature_names]
# Scale the data
sample_scaled = self.scaler.transform(sample_df)
# Make prediction
prediction = self.nn_model.predict(sample_scaled)[0]
return prediction
def main():
"""Main function"""
print("California Housing Price Prediction - Linear Regression & Neural Network")
print("=" * 70)
# Initialize
predictor = CaliforniaHousingKaggleStyle()
# Load data
data = predictor.load_data()
# Prepare data
predictor.prepare_data()
# Train models
predictor.train_models()
# Evaluate models
results = predictor.evaluate_models()
# Save models
predictor.save_models()
# Example predictions
print("\n=== Example Predictions ===")
sample_data = {
'MedInc': 8.3252,
'HouseAge': 41.0,
'AveRooms': 6.984127,
'AveBedrms': 1.023810,
'Population': 322.0,
'AveOccup': 2.555556,
'Latitude': 37.88,
'Longitude': -122.23
}
lr_prediction = predictor.predict_with_linear_regression(sample_data)
nn_prediction = predictor.predict_with_neural_network(sample_data)
print(f"Sample data: {sample_data}")
print(f"Linear Regression prediction: ${lr_prediction * 100000:.2f}")
print(f"Neural Network prediction: ${nn_prediction * 100000:.2f}")
main()
return
@app.cell
def _(mo):
mo.md(r"""You already have two models prepared for you. One is a linear regression, the other is a neural network. Run the followung cell to load them and make a sample prediction:""")
return
@app.cell(hide_code=True)
def _(joblib, pd):
def load_models():
linear_model_data = joblib.load('linear_regression_model.pkl')
nn_model_data = joblib.load('neural_network_model.pkl')
return linear_model_data, nn_model_data
def make_prediction(linear_model_data, nn_model_data, sample_data):
if isinstance(sample_data, dict):
sample_df = pd.DataFrame([sample_data])
else:
sample_df = sample_data
feature_names = linear_model_data['feature_names']
for feature in feature_names:
if feature not in sample_df.columns:
raise ValueError(f"Missing feature: {feature}")
sample_df = sample_df[feature_names]
scaler = linear_model_data['scaler']
sample_scaled = scaler.transform(sample_df)
linear_prediction = linear_model_data['model'].predict(sample_scaled)[0]
nn_model = nn_model_data['model']
nn_prediction = nn_model.predict(sample_scaled)[0]
return linear_prediction, nn_prediction
def predict_with_models():
print("Loading saved models...")
linear_model_data, nn_model_data = load_models()
print("Models loaded successfully!")
sample_data = {
'MedInc': 8.3252,
'HouseAge': 41.0,
'AveRooms': 6.984127,
'AveBedrms': 1.023810,
'Population': 322.0,
'AveOccup': 2.555556,
'Latitude': 37.88,
'Longitude': -122.23
}
print(f"\nSample data: {sample_data}")
linear_pred, nn_pred = make_prediction(linear_model_data, nn_model_data, sample_data)
print(f"Linear Regression prediction: ${linear_pred * 100000:.2f}")
print(f"Neural Network prediction: ${nn_pred * 100000:.2f}")
predict_with_models()
return
@app.cell
def _(mo):
mo.md(r"""# Interpret a Linear Regressor""")
return
@app.cell
def _(mo):
mo.md(r"""## Load Model's Coefficients and Intercept""")
return
@app.cell
def _(mo):
mo.md(r"""As you saw earlier, linear regression models are naturally interpretable. You can directly inspect the coefficients and intercept to understand how the model makes predictions. Go ahead and load the trained model so you can extract and examine those values:""")
return
@app.cell
def _(joblib):
model_data = joblib.load('linear_regression_model.pkl')
model = model_data['model']
feature_names = model_data['feature_names']
# Get coefficients and intercept
coefficients = model.coef_
intercept = model.intercept_
print("Linear Regression Model Interpretation")
print("=" * 50)
print(f"Intercept: {intercept:.4f}")
print("\nFeature Coefficients:")
print("-" * 30)
print(coefficients)
return coefficients, feature_names
@app.cell
def _(mo):
mo.md(rf"""#### Question: In a linear regression model, what does the intercept represent?""")
return
@app.cell
def _(mo):
mo.md(
r"""
The intercept in a linear regression model represents the predicted output when all input features are zero.
$$
y = w_1 x_1 + w_2 x_2 + \cdots + w_n x_n + b
$$
where:
$$
w_1, w_2, \dots, w_n \text{ are the coefficients}
$$
$$
x_1, x_2, \dots, x_n \text{ are the features}
$$
$$
b \text{ is the intercept}
$$
So:
$$
\text{Intercept } b = y \quad \text{when all } x_i = 0
$$
Think of the intercept as the model’s baseline prediction — the value of \( y \) when there’s no influence from any feature.
It anchors the regression line or hyperplane in the output space.
"""
)
return
@app.cell
def _(mo):
mo.md(
r"""
## Examine the most Influential Features
To get a better sense of what the coefficients represent and which features they belong to, you can create a DataFrame that pairs each coefficient with its corresponding feature name. This helps you see which inputs have the strongest impact on the model’s predictions.
"""
)
return
@app.cell
def _(coefficients, feature_names, np, pd):
def interpret_model():
coef_df = pd.DataFrame({
'Feature': feature_names,
'Coefficient': coefficients,
'Abs_Coefficient': np.abs(coefficients)
}).sort_values('Abs_Coefficient', ascending=False)
return coef_df
return (interpret_model,)
@app.cell
def _(interpret_model):
coef_df = interpret_model()
coef_df
return (coef_df,)
@app.cell
def _(mo):
mo.md(r"""According to your model's coefs and intercept, the three most important features are:""")
return
@app.cell
def _(coef_df):
top_features = coef_df.head(3)
print("\nTop 3 Most Important Features:")
for _, row in top_features.iterrows():
effect = "increases" if row['Coefficient'] > 0 else "decreases"
print(f"• {row['Feature']}: {effect} price by {abs(row['Coefficient']):.4f} units")
return
@app.cell
def _(mo):
mo.md(
r"""
The coefficients and their signs tell you a lot about the model.
**Latitude has the strongest negative effect**: moving north (higher latitude) decreases price.
**Longitude is next**: moving east (higher longitude) also decreases price.
**MedInc (median income) strongly increases housing price**: richer areas tend to have more expensive homes.
"""
)
return
@app.cell
def _(mo):
mo.md(r"""🤔 Question: What effect does `AveRooms` have on your model?""")
return
@app.cell
def _(mo):
mo.md(r"""# Explain a Neural Network""")
return
@app.cell
def _(mo):
mo.md(r"""## Understand SHAP""")
return
@app.cell
def _(mo):
mo.md(
r"""
SHAP stands for SHapley Additive exPlanations.
Shapley values come from coalitional game theory. They were introduced by Lloyd Shapley in 1953 as a principled way to distribute total gains fairly among players who form coalitions. The core idea is this:
> Each player’s payout should reflect their average contribution across all possible orders in which players could join the team.
In the context of machine learning:
- Each feature is treated as a player.
- The model's output is the total “reward” to be distributed.
- SHAP assigns each feature a value that reflects how much it contributed to the prediction, across all possible subsets of features.
It’s a way to explain a model’s output that’s consistent, additive, and fair.
"""
)
return
@app.cell
def _(mo):
mo.md(r"""## Use SHAP""")
return
@app.cell
def _(joblib, load_data, np, pd):
import shap
def load_nn_model():
model_data = joblib.load('neural_network_model.pkl')
return model_data['model'], model_data['scaler'], model_data['feature_names']
def perform_nn_shap_analysis():
model, scaler, feature_names = load_nn_model()
data = load_data()
# Use only the features that were used during training (exclude target)
X = data[feature_names]
X_scaled = scaler.transform(X)
# Use a subset for SHAP analysis
X_sample = X_scaled[:1000]
# Create a wrapper function for the neural network
def nn_predict(X):
return model.predict(X)
# Use KernelExplainer for neural networks
explainer = shap.KernelExplainer(nn_predict, X_sample[:100])
shap_values = explainer.shap_values(X_sample[:100])
print("Neural Network SHAP Analysis Results:")
print("=" * 50)
# Calculate feature importance
feature_importance = np.abs(shap_values).mean(0)
importance_df = pd.DataFrame({
'Feature': feature_names,
'SHAP_Importance': feature_importance
}).sort_values('SHAP_Importance', ascending=False)
print("\nFeature Importance (SHAP):")
print(importance_df)
return shap_values, importance_df
perform_nn_shap_analysis()
return
if __name__ == "__main__":
app.run()
|