Spaces:
Runtime error
Runtime error
from binance.client import Client | |
import pandas as pd | |
from datetime import datetime | |
class BinanceClient: | |
def __init__(self, api_key, api_secret): | |
"""Initialize the Binance client with user's API key and secret.""" | |
self.client = Client(api_key, api_secret) | |
def fetch_historical_prices(self, symbol, interval, days): | |
"""Fetch historical prices for a given symbol and interval. | |
Args: | |
symbol (str): The cryptocurrency symbol, e.g., 'BTCUSDT'. | |
interval (str): The candlestick chart intervals. | |
days (int): Number of days back to fetch data for. | |
Returns: | |
pd.DataFrame: A DataFrame with columns: date, open, high, low, close, volume. | |
""" | |
# Calculate the timestamp for 'days' days ago | |
end_time = datetime.utcnow() | |
start_str = (end_time - pd.Timedelta(days=days)).strftime('%d %b %Y %H:%M:%S') | |
# Fetch historical candlestick data from Binance | |
candles = self.client.get_historical_klines(symbol, interval, start_str) | |
# Create a DataFrame from the fetched data | |
df = pd.DataFrame(candles, columns=['date', 'open', 'high', 'low', 'close', 'volume', 'close_time', 'quote_asset_volume', 'number_of_trades', 'taker_buy_base_asset_volume', 'taker_buy_quote_asset_volume', 'ignore']) | |
# Convert timestamp to datetime and adjust columns | |
df['date'] = pd.to_datetime(df['date'], unit='ms') | |
df = df[['date', 'open', 'high', 'low', 'close', 'volume']].copy() | |
# Convert columns to the appropriate data type | |
df['open'] = df['open'].astype(float) | |
df['high'] = df['high'].astype(float) | |
df['low'] = df['low'].astype(float) | |
df['close'] = df['close'].astype(float) | |
df['volume'] = df['volume'].astype(float) | |
return df | |