import matplotlib.pyplot as plt import matplotlib.dates as mdates def plot_data_with_indicators_and_signals(data): """ Plots historical price data, SMAs, Bollinger Bands, and buy/sell signals. Args: data (pd.DataFrame): The DataFrame containing the historical prices, SMAs, Bollinger Bands, and signals. It expects 'close', 'SMA_21', 'SMA_50', 'BB_Upper', 'BB_Lower', 'Buy_Signal', and 'Sell_Signal' columns. """ # Create a new figure and set the size plt.figure(figsize=(14, 7)) # Plot closing price plt.plot(data['date'], data['close'], label='Close Price', alpha=0.5) # Plot SMAs plt.plot(data['date'], data['SMA_21'], label='21-Period SMA', alpha=0.75) plt.plot(data['date'], data['SMA_50'], label='50-Period SMA', alpha=0.75) # Plot Bollinger Bands plt.plot(data['date'], data['BB_Upper'], label='Upper Bollinger Band', linestyle='--', alpha=0.5) plt.plot(data['date'], data['BB_Lower'], label='Lower Bollinger Band', linestyle='--', alpha=0.5) # Highlight buy signals buy_signals = data[data['Buy_Signal']] plt.scatter(buy_signals['date'], buy_signals['close'], label='Buy Signal', marker='^', color='green', alpha=1) # Highlight sell signals sell_signals = data[data['Sell_Signal']] plt.scatter(sell_signals['date'], sell_signals['close'], label='Sell Signal', marker='v', color='red', alpha=1) # Formatting the plot plt.title('Cryptocurrency Analysis with Buy/Sell Signals') plt.xlabel('Date') plt.ylabel('Price') plt.legend() plt.grid(True) plt.xticks(rotation=45) plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d')) plt.gca().xaxis.set_major_locator(mdates.DayLocator(interval=5)) # Show plot plt.tight_layout() plt.show()