File size: 25,449 Bytes
6695a01
 
 
 
1722634
 
8197f3c
 
 
1722634
8197f3c
1722634
 
 
8197f3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6695a01
8197f3c
6695a01
8197f3c
6695a01
 
1722634
 
 
d82b2bb
1722634
8197f3c
 
1722634
 
 
 
 
6695a01
8197f3c
6695a01
8197f3c
1722634
8197f3c
1722634
6695a01
8197f3c
1722634
6695a01
 
d82b2bb
6695a01
 
 
d82b2bb
6695a01
1722634
8197f3c
 
d82b2bb
8197f3c
 
 
 
 
 
1722634
d82b2bb
8197f3c
d82b2bb
8197f3c
1722634
8197f3c
 
6695a01
 
8197f3c
 
 
 
6695a01
8197f3c
1722634
6695a01
 
8197f3c
6695a01
1722634
8197f3c
 
 
1722634
8197f3c
6695a01
8197f3c
1722634
 
8197f3c
 
 
 
 
1722634
8197f3c
1722634
 
6695a01
 
1722634
8197f3c
 
6695a01
8197f3c
 
 
 
6695a01
1722634
 
d82b2bb
8197f3c
 
 
 
 
 
 
 
 
 
 
 
d82b2bb
8197f3c
 
 
6695a01
1722634
6695a01
8197f3c
1722634
8197f3c
 
 
6695a01
d82b2bb
8197f3c
 
 
 
 
 
 
1722634
 
8197f3c
 
 
 
 
6695a01
8197f3c
1722634
d82b2bb
8197f3c
 
 
1722634
8197f3c
 
 
 
6695a01
8197f3c
1722634
 
8197f3c
 
6695a01
d82b2bb
8197f3c
 
 
 
1722634
 
8197f3c
1722634
d82b2bb
1722634
8197f3c
1722634
8197f3c
1722634
8197f3c
 
1722634
8197f3c
1722634
8197f3c
 
 
 
1722634
8197f3c
 
 
 
 
1722634
8197f3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6695a01
 
 
8197f3c
1722634
 
 
8197f3c
6695a01
8197f3c
6695a01
 
8197f3c
 
6695a01
8197f3c
 
d82b2bb
6695a01
 
 
 
 
1722634
8197f3c
d82b2bb
 
8197f3c
6695a01
8197f3c
1722634
6695a01
8197f3c
6695a01
8197f3c
1722634
 
6695a01
1722634
8197f3c
 
6695a01
 
1722634
8197f3c
1722634
6695a01
 
1722634
6695a01
8197f3c
 
 
d82b2bb
6695a01
1722634
8197f3c
1722634
8197f3c
 
1722634
8197f3c
 
 
6695a01
1722634
8197f3c
1722634
8197f3c
 
 
 
 
 
 
 
 
 
6695a01
1722634
 
6695a01
8197f3c
 
 
d82b2bb
6695a01
8197f3c
 
 
 
 
 
6695a01
8197f3c
d82b2bb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import hashlib

# --- Future Entropy/State Predictor (FEP V6) ---
class FutureEntropyStatePredictor(nn.Module):
    def __init__(self, ssr_dim, input_scalar_dim=2, hidden_dim=32, name=""):
        super().__init__()
        self.ssr_dim = ssr_dim
        self.name = name
        self.debug_prints_enabled = False

        fep_input_dim = ssr_dim + input_scalar_dim

        self.fc_ssr1 = nn.Linear(fep_input_dim, hidden_dim * 2)
        self.fc_ssr2 = nn.Linear(hidden_dim * 2, hidden_dim)
        self.fc_ssr_out = nn.Linear(hidden_dim, ssr_dim)

        self.fc_ent1 = nn.Linear(fep_input_dim, hidden_dim)
        self.fc_ent_out = nn.Linear(hidden_dim, 1)

    def forward(self, current_ssr_detached, current_block_entropy_detached, current_static_target_diff_detached):
        if current_ssr_detached.dim() == 1:
            current_ssr_expanded = current_ssr_detached.unsqueeze(0)
        else:
            current_ssr_expanded = current_ssr_detached

        current_block_entropy_exp = current_block_entropy_detached.view(current_ssr_expanded.size(0), -1)
        current_static_target_diff_exp = current_static_target_diff_detached.view(current_ssr_expanded.size(0),-1)

        fep_input = torch.cat((current_ssr_expanded, current_block_entropy_exp, current_static_target_diff_exp), dim=1)

        h_ssr = F.relu(self.fc_ssr1(fep_input))
        h_ssr = F.relu(self.fc_ssr2(h_ssr))
        delta_ssr_proposal = torch.tanh(self.fc_ssr_out(h_ssr))

        h_ent = F.relu(self.fc_ent1(fep_input))
        entropy_adj_factor_raw = self.fc_ent_out(h_ent)

        if current_ssr_detached.dim() == 1:
            delta_ssr_proposal = delta_ssr_proposal.squeeze(0)
            entropy_adj_factor_raw = entropy_adj_factor_raw.squeeze(0)

        return delta_ssr_proposal, entropy_adj_factor_raw.squeeze(-1)


# --- Entropy Estimator ---
class EntropyEstimator(nn.Module):
    def __init__(self, d_model_effective, hidden_dim=32, name=""):
        super().__init__()
        self.fc1 = nn.Linear(d_model_effective, hidden_dim)
        self.fc2 = nn.Linear(hidden_dim, 1)
        self.name = name
        self.debug_prints_enabled = False
    def forward(self, x, active_mask=None):
        if x.numel() == 0: return torch.tensor(0.0, device=x.device)
        if active_mask is not None:
            if active_mask.dtype != torch.bool: active_mask = active_mask.bool()
            if x.dim() == 3 and active_mask.dim() == 2 and x.shape[0] == active_mask.shape[0] and x.shape[1] == active_mask.shape[1]:
                 x_masked = x[active_mask]
            elif x.dim() == 2 and active_mask.dim() == 1 and x.shape[0] == active_mask.shape[0]: x_masked = x[active_mask]
            else: x_masked = x.reshape(-1, x.size(-1))
        else: x_masked = x.reshape(-1, x.size(-1))
        if x_masked.numel() == 0: return torch.tensor(0.0, device=x.device)
        h = F.relu(self.fc1(x_masked)); return torch.sigmoid(self.fc2(h)).mean()

# --- Seed Parser (V6) ---
class SeedParser:
    def __init__(self, seed_phrase, seed_number_str, d_model, ssr_dim, num_adaptive_blocks, num_sub_modules_per_block):
        self.seed_phrase = seed_phrase; self.seed_number_str = seed_number_str; self.d_model = d_model
        self.ssr_dim = ssr_dim
        self.num_adaptive_blocks = num_adaptive_blocks; self.num_sub_modules_per_block = num_sub_modules_per_block
        self.debug_prints_enabled = True
        if self.debug_prints_enabled: print(f"--- SeedParser Initialization (V6) ---\n  Seed Phrase (start): '{self.seed_phrase[:50]}...'\n  Seed Number: {self.seed_number_str}")
        phrase_hash = hashlib.sha256(seed_phrase.encode()).hexdigest(); self.phrase_base_val = int(phrase_hash[:16], 16)
        if self.debug_prints_enabled: print(f"  Phrase Base Value (from hash): {self.phrase_base_val}")
        self.num_sequence = [int(d) for d in seed_number_str if d.isdigit()]
        if not self.num_sequence: self.num_sequence = [sum(bytearray(seed_number_str.encode())) % 10]
        if self.debug_prints_enabled: print(f"  Numerical Sequence (from seed number): {self.num_sequence}")
        self.init_map = self._generate_init_map()
        if self.debug_prints_enabled:
            print(f"  SeedParser: Generated InitMap:")
            for i, block_config in enumerate(self.init_map["block_configs"]):
                raw_gate_scores_str = [f'{g:.3f}' for g in block_config['raw_gate_scores_for_param_init']]
                initial_ssr_str = [f'{s:.3f}' for s in block_config['initial_ssr_values'][:min(3, self.ssr_dim)]] + (["..."] if self.ssr_dim > 3 else [])
                print(f"    Block {i}: StaticTgtEnt: {block_config['static_target_entropy']:.4f}, RawGateScores: {raw_gate_scores_str}, InitialSSR (sample): {initial_ssr_str}")
        if self.debug_prints_enabled: print(f"--- SeedParser Initialized ---")

    def _get_deterministic_float_list(self, key_name_prefix, num_values, min_val=-1.0, max_val=1.0, sequence_idx_offset=0):
        values = []
        for i in range(num_values): values.append(self._get_deterministic_float(f"{key_name_prefix}_{i}", min_val, max_val, sequence_idx_offset + i))
        return values
    def _get_deterministic_float(self, key_name, min_val=0.0, max_val=1.0, sequence_idx_offset=0):
        key_specific_hash = int(hashlib.sha256(key_name.encode() + self.seed_phrase.encode()).hexdigest()[:8], 16); num_seq_val = 0
        if self.num_sequence:
            for i_digit, digit in enumerate(self.num_sequence): num_seq_val = (num_seq_val * 10 + digit + i_digit) % 1000003
        combined_seed_val = self.phrase_base_val + key_specific_hash + num_seq_val + sequence_idx_offset
        norm_float = (math.sin(float(combined_seed_val) * 0.12345) + 1.0) / 2.0
        return min_val + norm_float * (max_val - min_val)

    def _generate_init_map(self):
        init_map = {"block_configs": []}
        for i in range(self.num_adaptive_blocks):
            gate_raw_scores = self._get_deterministic_float_list(f"block_{i}_gate_raw_score", self.num_sub_modules_per_block, -1.5, 1.5, sequence_idx_offset=i*30)
            initial_ssr_values = self._get_deterministic_float_list(f"block_{i}_initial_ssr", self.ssr_dim, -0.1, 0.1, sequence_idx_offset=i*30 + self.num_sub_modules_per_block)
            static_target_entropy = self._get_deterministic_float(f"block_{i}_static_target_entropy", 0.15, 0.45, sequence_idx_offset=i*30 + self.num_sub_modules_per_block + self.ssr_dim)
            init_map["block_configs"].append({"raw_gate_scores_for_param_init": gate_raw_scores, "initial_ssr_values": initial_ssr_values, "static_target_entropy": static_target_entropy})
        return init_map
    def get_block_config(self, block_idx):
        if 0 <= block_idx < len(self.init_map["block_configs"]): return self.init_map["block_configs"][block_idx]
        return None

# --- Adaptive Block (V6) ---
class AdaptiveBlock(nn.Module):
    MAX_DYNAMIC_ENTROPY_ADJUSTMENT_RANGE = 0.05
    INITIAL_HEURISTIC_STRENGTH = 0.025
    FINAL_HEURISTIC_STRENGTH = 0.005
    SSR_PROPOSAL_SCALING_FACTOR = 0.1

    def __init__(self, d_model, ssr_dim, n_heads, d_ff, dropout, seed_parser_config_for_block, block_idx, num_sub_modules=3):
        super().__init__()
        self.d_model = d_model; self.ssr_dim = ssr_dim; self.block_idx = block_idx; self.num_sub_modules = num_sub_modules
        self.config_from_seed = seed_parser_config_for_block; self.debug_prints_enabled = True

        initial_ssr_vals = self.config_from_seed.get("initial_ssr_values", [0.0] * self.ssr_dim)
        if len(initial_ssr_vals) != self.ssr_dim: initial_ssr_vals = [0.0] * self.ssr_dim
        self.ssr = nn.Parameter(torch.tensor(initial_ssr_vals, dtype=torch.float32))
        self.register_buffer('initial_ssr_buffer', torch.tensor(initial_ssr_vals, dtype=torch.float32))

        raw_gate_param_inits_list = self.config_from_seed.get("raw_gate_scores_for_param_init", [0.0] * self.num_sub_modules)
        if len(raw_gate_param_inits_list) != self.num_sub_modules: raw_gate_param_inits_list = [0.0] * self.num_sub_modules
        self.gates_params = nn.Parameter(torch.tensor(raw_gate_param_inits_list, dtype=torch.float32))
        self.register_buffer('initial_raw_gate_scores_buffer', torch.tensor(raw_gate_param_inits_list, dtype=torch.float32))

        if self.debug_prints_enabled:
            raw_gate_scores_str = [f'{g:.3f}' for g in raw_gate_param_inits_list]
            ssr_sample_str = [f'{s:.3f}' for s in initial_ssr_vals[:min(3, self.ssr_dim)]] + (["..."] if self.ssr_dim > 3 else [])
            print(f"  Initializing AdaptiveBlock {self.block_idx} (V6): StaticSeedTgtEnt={self.config_from_seed['static_target_entropy']:.3f}, InitialRawGateScores={raw_gate_scores_str}, InitialSSR (sample): {ssr_sample_str}")

        self.d_model_effective = self.d_model + self.ssr_dim
        self.sub_module_0 = nn.MultiheadAttention(self.d_model_effective, n_heads, dropout=dropout, batch_first=True)
        self.sub_module_1 = nn.Sequential(nn.Linear(self.d_model_effective, d_ff), nn.GELU(), nn.Dropout(dropout), nn.Linear(d_ff, self.d_model_effective))
        self.sub_module_2 = nn.Sequential(nn.Linear(self.d_model_effective, self.d_model_effective), nn.GELU(), nn.Dropout(dropout))
        self.sub_modules = nn.ModuleList([self.sub_module_0, self.sub_module_1, self.sub_module_2])
        if self.num_sub_modules > len(self.sub_modules): self.num_sub_modules = len(self.sub_modules)
        elif self.num_sub_modules <= 0: raise ValueError(f"AdaptiveBlock {self.block_idx} must have at least one sub_module.")

        self.norm_input_x = nn.LayerNorm(self.d_model)
        self.norm_ssr_input = nn.LayerNorm(self.ssr_dim)
        self.norm_after_gates = nn.LayerNorm(self.d_model_effective)
        self.ssr_update_net = nn.Sequential(
            nn.Linear(self.ssr_dim + self.d_model_effective + self.ssr_dim, self.ssr_dim * 2),
            nn.GELU(), nn.Dropout(dropout),
            nn.Linear(self.ssr_dim * 2, self.ssr_dim)
        )
        self.norm_ssr_output = nn.LayerNorm(self.ssr_dim)
        self.dropout_layer = nn.Dropout(dropout)
        self.output_entropy_estimator = EntropyEstimator(self.d_model_effective, name=f"Block{block_idx}_OutEntropy")
        self.fep = FutureEntropyStatePredictor(ssr_dim=self.ssr_dim, input_scalar_dim=2, name=f"Block{block_idx}_FEP")
        self.wiring_phase_active = False
        self.static_seed_target_entropy = self.config_from_seed.get("static_target_entropy", 0.25)
        self.current_epoch_in_wiring = 0
        self.total_wiring_epochs = 1

    def set_wiring_phase(self, active, current_epoch_num=0, total_wiring_epochs=1):
        self.wiring_phase_active = active
        if active: self.current_epoch_in_wiring = current_epoch_num; self.total_wiring_epochs = total_wiring_epochs if total_wiring_epochs > 0 else 1
    def _get_current_heuristic_strength(self):
        if not self.wiring_phase_active: return self.INITIAL_HEURISTIC_STRENGTH
        progress = min(self.current_epoch_in_wiring / max(1, (self.total_wiring_epochs - 1)), 1.0)
        return self.INITIAL_HEURISTIC_STRENGTH - progress * (self.INITIAL_HEURISTIC_STRENGTH - self.FINAL_HEURISTIC_STRENGTH)

    def forward(self, x, key_padding_mask=None, attn_mask=None):
        batch_size, seq_len, _ = x.shape
        ssr_before_update_for_loss = self.ssr.data.clone().detach()

        current_ssr_expanded = self.ssr.unsqueeze(0).unsqueeze(0).expand(batch_size, seq_len, -1).to(x.device)
        normed_x = self.norm_input_x(x)
        normed_ssr_expanded = self.norm_ssr_input(current_ssr_expanded)
        x_conditioned = torch.cat((normed_x, normed_ssr_expanded), dim=-1)
        current_gates_activations = torch.sigmoid(self.gates_params)

        if self.debug_prints_enabled and (self.wiring_phase_active or not self.training):
            ssr_print_val = self.ssr.data.detach().clone()
            ssr_sample_str = [f'{s.item():.3f}' for s in ssr_print_val[:min(3, self.ssr_dim)]] + (["..."] if self.ssr_dim > 3 else [])
            print(f"    AdaptiveBlock {self.block_idx} (Wiring: {'ON' if self.wiring_phase_active else 'OFF'}, Epoch {self.current_epoch_in_wiring+1}/{self.total_wiring_epochs if self.wiring_phase_active else 'N/A'})")
            print(f"      Input x: {x.shape}, CurrentSSR (sample): {ssr_sample_str}, RawG: {[f'{g.item():.3f}' for g in self.gates_params.data]}, SigmoidG: {[f'{s.item():.3f}' for s in current_gates_activations.data]}")

        outputs_from_submodules = []
        for i, module_instance in enumerate(self.sub_modules):
            if i >= self.num_sub_modules: break
            if i == 0: module_out, _ = module_instance(x_conditioned, x_conditioned, x_conditioned, key_padding_mask=key_padding_mask, attn_mask=attn_mask, need_weights=False)
            else: module_out = module_instance(x_conditioned)
            outputs_from_submodules.append(module_out * current_gates_activations[i])

        gated_sum_output = torch.sum(torch.stack(outputs_from_submodules, dim=0), dim=0) if outputs_from_submodules else torch.zeros_like(x_conditioned)
        block_processed_output_unnorm = x_conditioned + self.dropout_layer(gated_sum_output)
        block_processed_output = self.norm_after_gates(block_processed_output_unnorm)
        x_output_for_next_block = block_processed_output[:, :, :self.d_model]

        current_output_entropy = self.output_entropy_estimator(block_processed_output.detach(), active_mask=~key_padding_mask if key_padding_mask is not None else None)
        current_static_target_diff = current_output_entropy - self.static_seed_target_entropy
        dynamic_target_entropy_for_heuristic = self.static_seed_target_entropy
        fep_delta_ssr_proposal_scaled = torch.zeros_like(self.ssr.data, device=x.device)
        fep_entropy_adj_factor_for_report = torch.tensor(0.0, device=x.device)

        if self.wiring_phase_active and self.training:
            fep_delta_ssr_proposal_raw, fep_entropy_adj_factor_raw = self.fep(self.ssr.data.detach(), current_output_entropy.detach(), current_static_target_diff.detach())
            fep_delta_ssr_proposal_scaled = fep_delta_ssr_proposal_raw * self.SSR_PROPOSAL_SCALING_FACTOR
            fep_entropy_adj_factor_tanh = torch.tanh(fep_entropy_adj_factor_raw)
            dynamic_adjustment = fep_entropy_adj_factor_tanh * self.MAX_DYNAMIC_ENTROPY_ADJUSTMENT_RANGE
            dynamic_target_entropy_for_heuristic = self.static_seed_target_entropy + dynamic_adjustment.item()
            dynamic_target_entropy_for_heuristic = max(0.01, min(0.99, dynamic_target_entropy_for_heuristic))
            fep_entropy_adj_factor_for_report = fep_entropy_adj_factor_tanh

            with torch.no_grad():
                entropy_diff_for_heuristic = current_output_entropy - dynamic_target_entropy_for_heuristic
                base_adj_strength = self._get_current_heuristic_strength()
                adaptive_strength_factor = min(max(abs(entropy_diff_for_heuristic.item()) * 7.0, 0.3), 2.5)
                adj_strength = base_adj_strength * adaptive_strength_factor
                if self.debug_prints_enabled:
                    print(f"    AdaptiveBlock {self.block_idx} WIRING HEURISTIC: RawG={[f'{g.item():.3f}' for g in self.gates_params.data]}, SigmoidG={[f'{s.item():.3f}' for s in current_gates_activations.data]}")
                    print(f"      OutEnt={current_output_entropy.item():.4f}, StaticTgtEnt={self.static_seed_target_entropy:.4f}, FEP_EntAdjFactor={fep_entropy_adj_factor_tanh.item():.4f}, DynTgtEnt={dynamic_target_entropy_for_heuristic:.4f}, ED_Dyn={entropy_diff_for_heuristic.item():.4f}, BaseHeurStr={base_adj_strength:.4f} AdjStr={adj_strength:.4f}")

                # CORRECTED: 'If' to 'if'
                if entropy_diff_for_heuristic.item() > 1e-4:
                    self.gates_params.data[0] -= adj_strength
                    self.gates_params.data[1] += adj_strength * 0.6
                    if self.num_sub_modules > 2: # Corrected 'If' to 'if'
                        self.gates_params.data[2] += adj_strength * 0.4
                elif entropy_diff_for_heuristic.item() < -1e-4:
                    self.gates_params.data[0] += adj_strength
                    self.gates_params.data[1] -= adj_strength * 0.6
                    if self.num_sub_modules > 2: # Corrected 'If' to 'if'
                        self.gates_params.data[2] -= adj_strength * 0.4

                self.gates_params.data.clamp_(-3.5, 3.5)
                if self.debug_prints_enabled: print(f"    AdaptiveBlock {self.block_idx} WIRING HEURISTIC POST: RawG={[f'{g.item():.3f}' for g in self.gates_params.data]}, SigmoidG={[f'{s.item():.3f}' for s in torch.sigmoid(self.gates_params.data)]}")

        block_output_aggregated = torch.mean(block_processed_output, dim=1)

        ssr_update_input_list = []
        for b_idx in range(batch_size):
            # Correctly use fep_delta_ssr_proposal_scaled
            current_fep_delta_ssr_for_update = fep_delta_ssr_proposal_scaled[b_idx] if fep_delta_ssr_proposal_scaled.dim() > 1 and fep_delta_ssr_proposal_scaled.size(0) == batch_size else fep_delta_ssr_proposal_scaled

            ssr_update_input_list.append(torch.cat((
                self.ssr.data.detach().clone(),
                block_output_aggregated[b_idx].detach(), # Detach here if ssr_update_net is not to influence main path grads
                current_fep_delta_ssr_for_update.detach() # Detach FEP proposal for same reason
            )))

        ssr_update_input_batched = torch.stack(ssr_update_input_list, dim=0)
        new_ssr_values_batched = self.ssr_update_net(ssr_update_input_batched)

        if self.training: self.ssr.data = self.norm_ssr_output(torch.mean(new_ssr_values_batched, dim=0))
        elif batch_size == 1: self.ssr.data = self.norm_ssr_output(new_ssr_values_batched.squeeze(0))

        ssr_after_update_for_report = self.ssr.data.clone()

        return x_output_for_next_block, current_output_entropy, current_gates_activations, self.gates_params.data.clone(), \
               fep_entropy_adj_factor_for_report, torch.tensor(dynamic_target_entropy_for_heuristic, device=x.device), \
               ssr_before_update_for_loss, ssr_after_update_for_report, fep_delta_ssr_proposal_scaled


# --- Positional Encoding ---
class PositionalEncoding(nn.Module):
    def __init__(self,d_model,dropout=0.1,max_len=512): super().__init__(); self.dropout=nn.Dropout(p=dropout); pe=torch.zeros(max_len,d_model); pos=torch.arange(0,max_len,dtype=torch.float).unsqueeze(1); div=torch.exp(torch.arange(0,d_model,2).float()*(-math.log(10000.0)/d_model)); pe[:,0::2]=torch.sin(pos*div); pe[:,1::2]=torch.cos(pos*div); self.register_buffer('pe',pe.unsqueeze(0))
    def forward(self,x): x=x+self.pe[:,:x.size(1),:]; return self.dropout(x)

# --- Main SWCK Model (V6) ---
class SWCKModel(nn.Module):
    def __init__(self, vocab_size, d_model, ssr_dim, n_heads, d_ff, num_adaptive_blocks,
                 dropout, seed_phrase, seed_number_str, num_sub_modules_per_block=3):
        super().__init__()
        self.d_model = d_model; self.ssr_dim = ssr_dim; self.seed_phrase = seed_phrase; self.seed_number_str = seed_number_str
        self.num_adaptive_blocks = num_adaptive_blocks
        self.debug_prints_enabled = True
        if self.debug_prints_enabled: print(f"--- Initializing SWCKModel (V6) ---")
        self.seed_parser = SeedParser(seed_phrase, seed_number_str, d_model, ssr_dim, num_adaptive_blocks, num_sub_modules_per_block)
        self.seed_parser.debug_prints_enabled = self.debug_prints_enabled
        self.embedding = nn.Embedding(vocab_size, d_model)
        self.pos_encoder = PositionalEncoding(d_model, dropout)
        self.adaptive_blocks = nn.ModuleList()
        for i in range(num_adaptive_blocks):
            block_config = self.seed_parser.get_block_config(i)
            if block_config is None: raise ValueError(f"SWCKModel Error: Could not get seed config for block {i}")
            new_block = AdaptiveBlock(d_model, ssr_dim, n_heads, d_ff, dropout, block_config, block_idx=i, num_sub_modules=num_sub_modules_per_block)
            new_block.debug_prints_enabled = self.debug_prints_enabled
            self.adaptive_blocks.append(new_block)
            if self.debug_prints_enabled: print(f"  SWCKModel: Added AdaptiveBlock {i} (V6 with SSR, FEP_SSR, Sigmoid Gates, Decaying Heuristic)")
        self.fc_out = nn.Linear(d_model, vocab_size)
        self.overall_output_entropy_estimator = EntropyEstimator(d_model, name="OverallOutEntropy_dmodel") # Estimator for final d_model output
        self.overall_output_entropy_estimator.debug_prints_enabled = False
        self._init_weights()
        if self.debug_prints_enabled: print(f"--- SWCKModel V6 Initialized (Vocab: {vocab_size}, d_model: {d_model}, SSR_dim: {ssr_dim}, Blocks: {num_adaptive_blocks}x{num_sub_modules_per_block}sub) ---")

    def _init_weights(self):
        initrange = 0.1; self.embedding.weight.data.uniform_(-initrange, initrange)
        self.fc_out.bias.data.zero_(); self.fc_out.weight.data.uniform_(-initrange, initrange)

    def set_wiring_phase(self, active, current_epoch_num=0, total_wiring_epochs=1):
        if self.debug_prints_enabled: print(f"SWCKModel: Setting wiring phase to {active} for all blocks (Epoch {current_epoch_num+1}/{total_wiring_epochs} of wiring if active).")
        for block in self.adaptive_blocks: block.set_wiring_phase(active, current_epoch_num, total_wiring_epochs)

    def forward(self, src_tokens, src_key_padding_mask=None):
        if self.debug_prints_enabled:
            print(f"\n--- SWCKModel V6 Forward Pass (Training: {self.training}) ---")
            print(f"  Input src_tokens: {src_tokens.shape}")
        x = self.embedding(src_tokens) * math.sqrt(self.d_model)
        x = self.pos_encoder(x)
        if self.debug_prints_enabled: print(f"  After Embedding & PosEnc, x: {x.shape}")

        block_output_entropies = []; current_block_gate_activations = []; current_block_gate_raw_params = []
        fep_entropy_adj_factors = []; dynamic_target_entropies_used = []
        ssr_befores_for_loss = []; ssr_afters_for_report = []; fep_delta_ssr_proposals_report = []

        for i, block in enumerate(self.adaptive_blocks):
            if self.debug_prints_enabled: print(f"  Processing AdaptiveBlock {i}...")
            x, block_entropy, current_gate_acts, raw_gate_params, fep_ent_adj_factor, dyn_target_ent, ssr_before, ssr_after, fep_delta_ssr = block(x, key_padding_mask=src_key_padding_mask, attn_mask=None)

            block_output_entropies.append(block_entropy); current_block_gate_activations.append(current_gate_acts)
            current_block_gate_raw_params.append(raw_gate_params); fep_entropy_adj_factors.append(fep_ent_adj_factor)
            dynamic_target_entropies_used.append(dyn_target_ent)
            ssr_befores_for_loss.append(ssr_before)
            ssr_afters_for_report.append(ssr_after)
            fep_delta_ssr_proposals_report.append(fep_delta_ssr)

            if self.debug_prints_enabled:
                acts_str = [f'{act.item():.3f}' for act in current_gate_acts]
                raw_str = [f'{rp.item():.3f}' for rp in raw_gate_params]
                ssr_after_str = [f'{srp.item():.3f}' for srp in ssr_after[:min(3, self.ssr_dim)]] + (["..."] if self.ssr_dim > 3 else [])

                fep_ds_str_report_inner = "N/A"
                if torch.is_tensor(fep_delta_ssr) and fep_delta_ssr.numel() > 0 :
                    fep_ds_str_report_inner = [f'{ds.item():.3f}' for ds in fep_delta_ssr[:min(3, self.ssr_dim)]] + (["..."] if self.ssr_dim > 3 else [])

                fep_ent_adj_factor_str = f"{fep_ent_adj_factor.item():.3f}" if torch.is_tensor(fep_ent_adj_factor) else "N/A_Scalar"
                dyn_target_str = f"{dyn_target_ent.item():.3f}" if torch.is_tensor(dyn_target_ent) else "N/A_Scalar"
                print(f"  Output x from Block {i}: {x.shape}, MeasEnt: {block_entropy.item():.4f}, SigmoidG: {acts_str}, RawG: {raw_str}")
                print(f"    Block {i} SSR_After (sample): {ssr_after_str}, FEP_DeltaSSR_Proposal (sample): {fep_ds_str_report_inner}, FEP_EntAdjFactor: {fep_ent_adj_factor_str}, DynTgtEnt: {dyn_target_str}")

        logits = self.fc_out(x)
        if self.debug_prints_enabled: print(f"  Output logits: {logits.shape}")
        final_active_mask = ~src_key_padding_mask if src_key_padding_mask is not None else None

        overall_entropy = self.overall_output_entropy_estimator(x.detach(), active_mask=final_active_mask)
        if self.debug_prints_enabled: print(f"  Overall Final Representation (d_model) Entropy: {overall_entropy.item():.4f}")

        entropy_report = {
            "block_output_entropies": block_output_entropies, "overall_output_entropy": overall_entropy,
            "current_block_gate_activations": current_block_gate_activations, "current_block_gate_params": current_block_gate_raw_params,
            "fep_entropy_adj_factors": fep_entropy_adj_factors, "dynamic_target_entropies_used": dynamic_target_entropies_used,
            "ssr_befores_for_loss": ssr_befores_for_loss,
            "ssr_afters_for_report": ssr_afters_for_report,
            "fep_delta_ssr_proposals": fep_delta_ssr_proposals_report
        }
        if self.debug_prints_enabled: print(f"--- SWCKModel V6 Forward Pass Complete ---")
        return logits, entropy_report