File size: 19,991 Bytes
3232d64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 |
"""
Unified Benchmark Pipeline
This module provides a unified interface to run all benchmark pipelines
with a single model name.
"""
import logging
import json
import os
import re
from typing import Dict, Any, List, Optional, Tuple
import traceback
import hashlib
# Import email validator library
try:
from email_validator import validate_email, EmailNotValidError
logger = logging.getLogger(__name__)
except ImportError as e:
# If library is not installed, log warning
validate_email = None
EmailNotValidError = Exception
logger = logging.getLogger(__name__)
logger.warning(f"email-validator library not installed: {e}")
from api.clients.airflow_client import AirflowClient
from api.config import get_api_config_for_type, get_airflow_config
from pipelines.benchmark_configs import get_unified_benchmark_config
from src.utils import log_model_submission
# Import formatting utilities
from src.display.formatting import styled_error, styled_message, styled_warning
from src.submission.check_model_type import check_model_type
from src.submission.check_validity import determine_model_type
# Set up logger
logger = logging.getLogger(__name__)
# Configure logging to be minimal
logging.getLogger("api.clients.airflow_client").setLevel(logging.ERROR)
logging.getLogger("mezura.http").setLevel(logging.ERROR)
logging.getLogger("api.config").setLevel(logging.ERROR)
# Get DAG IDs from configuration
def get_dag_id(benchmark_type: str) -> str:
"""
Get the DAG ID for a benchmark type from configuration
Args:
benchmark_type: Type of benchmark
Returns:
str: DAG ID for the benchmark
"""
config = get_api_config_for_type(benchmark_type)
return config.get("dag_id", f"{benchmark_type}_benchmark")
# Map benchmark types to their DAG IDs
DAG_IDS = {
"unified": "accept_request_dag",
"hybrid": "evalmix",
# "lmharness": "lmharness_benchmark", # LM Harness removed
"rag": "rag_benchmark",
"snake": "snake_benchmark",
"arena": "arena_evaluation",
"light": "lighteval_benchmark"
}
class BenchmarkRunner:
"""
Runner class for unified benchmark execution
"""
def __init__(self):
"""Initialize the benchmark runner"""
self.client = AirflowClient()
def run_all_benchmarks(self, hf_repo: str, base_model: str = None) -> Dict[str, Any]:
"""
Run the unified benchmark pipeline for a single model
Args:
hf_repo: Name of the model repository to evaluate
base_model: Base model information (optional)
Returns:
Dict[str, Any]: Dictionary with benchmark results
"""
# Log the benchmark start
logger.info("Preparing benchmark task")
# Get the unified benchmark configuration
benchmark_config = get_unified_benchmark_config(hf_repo, base_model)
# Send the benchmark request
try:
logger.info("Submitting benchmark task to execution system")
result = self.client.send_dag_request(
dag_id=DAG_IDS["unified"],
conf=benchmark_config["conf"]
)
return {
"status": "success",
"message": f"Benchmark started successfully",
"results": {"unified": result}
}
except Exception as e:
logger.error("Benchmark submission failed")
return {
"status": "error",
"message": f"Error running benchmark: {str(e)}",
"results": {}
}
def run_all_benchmarks_with_config(self, benchmark_config: Dict[str, Any]) -> Dict[str, Any]:
"""
Run the unified benchmark pipeline for a single model with a given benchmark configuration
Args:
benchmark_config: Dictionary with benchmark configuration
Returns:
Dict[str, Any]: Dictionary with benchmark results
"""
# Get the model name
model_name = benchmark_config.get("conf", {}).get("repo_id", "model")
if "hf_repo" in benchmark_config.get("conf", {}):
model_name = benchmark_config["conf"]["hf_repo"]
logger.info(f"Preparing benchmark with configuration for model: {model_name}")
# SECURITY: Commented out to prevent potential credential exposure
# logger.info(f"Benchmark configuration: {json.dumps(benchmark_config)}")
# SECURITY: Commented out to prevent potential credential exposure
# logger.info(f"POST payload: {json.dumps(benchmark_config['conf'])}")
# Add specific logging for base model and repo ID
repo_id = benchmark_config.get('conf', {}).get('repo_id', 'unknown')
base_model = benchmark_config.get('conf', {}).get('base_model', 'unknown')
# logger.info(f"SENDING TO AIRFLOW - REPO_ID: {repo_id}, BASE_MODEL: {base_model}")
# Log to dedicated submissions log file
log_model_submission(repo_id, base_model)
# Send the benchmark request
try:
logger.info("Submitting benchmark task to execution system")
result = self.client.send_dag_request(
dag_id=DAG_IDS["unified"],
conf=benchmark_config["conf"]
)
return {
"status": "success",
"message": "Benchmark started successfully",
"results": {"unified": result}
}
except Exception as e:
logger.error(f"Benchmark submission failed: {str(e)}")
logger.error(f"Exception details: {traceback.format_exc()}")
return {
"status": "error",
"message": f"Error running benchmark: {str(e)}",
"results": {}
}
# Email validation function with email-validator
def is_valid_email(email: str) -> bool:
"""
Validate email using email-validator library
Args:
email: Email string to validate
Returns:
bool: True if email is valid according to email-validator
"""
if not email:
return False
# Use email-validator library if available
if validate_email is not None:
try:
# Validate the email (no deliverability check needed for our case)
emailinfo = validate_email(email, check_deliverability=False)
logger.info(f"Email validation successful")
# Store the normalized form of the email address
return True
except EmailNotValidError as e:
# Log the specific validation error
logger.info(f"Email validation failed")
return False
# If library not installed, fall back to simple regex validation
logger.warning("Using fallback email validation")
basic_pattern = re.compile(r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$')
if bool(basic_pattern.match(email)):
logger.info(f"Email validation successful")
return True
logger.info(f"Email validation failed")
return False
def submit_unified_benchmark(hf_repo: str, base_model: str = None, reasoning: bool = False, email: str = None, profile=None):
"""
Submit unified benchmark for a single model
Args:
hf_repo: Name of the model repository to evaluate
base_model: Base model information (artık kullanılmıyor)
reasoning: Whether to enable reasoning capability during evaluation
email: Email address for notification (required)
profile: User profile object from Hugging Face login (required)
Returns:
Tuple[str, Dict]: A tuple containing:
- result_text: A markdown string with the status message
- dag_run_info: A dictionary with the DAG run information
"""
try:
# Verify user is logged in before allowing submission
if profile is None:
return styled_error("Authentication required. Please log in with your Hugging Face account to submit models."), {}
# Get username from profile for logging
username = None
try:
if hasattr(profile, 'username'):
username = profile.username
elif hasattr(profile, 'name'):
username = profile.name
elif isinstance(profile, str) and profile.strip():
username = profile
# Extract username from "Logout (username)" format if present
logout_pattern = re.compile(r'Logout \(([^)]+)\)')
match = logout_pattern.search(username)
if match:
username = match.group(1)
# Also try other common formats
# Handle any string with parentheses containing the username
elif '(' in username and ')' in username:
# Extract text between last opening and first closing parenthesis
start = username.rindex('(') + 1
end = username.find(')', start)
if start < end:
extracted = username[start:end].strip()
if extracted: # Only use if not empty
username = extracted
# If none of the above conditions are met, keep username as None
# If username is not None, ensure it's a string
if username is not None:
if not isinstance(username, str):
username = str(username)
except Exception as e:
username = None
logger.warning(f"Failed to extract username from profile: {str(e)}")
# Log successful auth
logger.info(f"Submission authorized for user: {username}")
logger.info(f"Benchmark process started")
# Validate email if provided
valid_email = None
if email:
try:
# Use the full email validation to get normalized form
if validate_email is not None:
# Validate and normalize the email
emailinfo = validate_email(email, check_deliverability=False)
valid_email = emailinfo.normalized # Use normalized form
logger.info(f"Email validation completed")
else:
# Fallback if library not available
is_valid = is_valid_email(email)
if is_valid:
valid_email = email
logger.info(f"Email validation completed")
else:
logger.warning(f"Email validation failed")
return styled_warning("Invalid email address. Please enter a valid email address."), {}
except EmailNotValidError as e:
logger.warning(f"Email validation failed")
return styled_warning(f"Invalid email address: {str(e)}"), {}
else:
# Email is required
logger.warning(f"Email required but not provided")
return styled_warning("Please provide an email address to receive benchmark results."), {}
# First, analyze the model to get information without displaying details
_, model_data = get_model_information(hf_repo, display_full_info=False)
# Base model algılama ve kontrol işlemleri tamamen kaldırıldı
# Determine model type
model_type, type_message = determine_model_type(hf_repo)
logger.info(f"Model type determination completed")
if model_type == "unknown":
return styled_warning(f"Could not determine model type. Benchmark not submitted."), {}
# New check: Don't allow merged models
if model_type == "merge" or model_type == "merged_model":
logger.warning(f"Merged model detected. Currently not supported.")
return styled_warning(f"Merged models are not supported yet. Benchmark not submitted."), {}
# Step 3: Generate a model evaluation name - short, with "eval", under 28 chars
# Extract short name from repo ID
if "/" in hf_repo:
org, model_name = hf_repo.split("/", 1)
short_name = model_name
else:
short_name = hf_repo
# Clean the name and make it shorter if needed
# Remove special characters and replace with hyphens
clean_name = re.sub(r'[^a-zA-Z0-9]', '-', short_name)
# Truncate if too long
if len(clean_name) > 20: # Leave room for eval suffix
clean_name = clean_name[:20]
# Add eval suffix if not already present
if "eval" not in clean_name.lower():
eval_name = f"{clean_name}-eval"
else:
eval_name = clean_name
# Ensure the final name is under 28 characters
if len(eval_name) > 28:
eval_name = eval_name[:28]
logger.info(f"Evaluation name generation completed")
# Create benchmark runner
runner = BenchmarkRunner()
# Get the benchmark configuration and add model type parameter
benchmark_config = get_unified_benchmark_config(hf_repo, base_model)
# Make sure hf_repo is set correctly in the configuration
if "conf" in benchmark_config:
# Ensure hf_repo is set properly
benchmark_config["conf"]["hf_repo"] = hf_repo
# Also set repo_id for backwards compatibility
benchmark_config["conf"]["repo_id"] = hf_repo
# Add model type and model name to the configuration
benchmark_config["conf"]["model_type"] = model_type
benchmark_config["conf"]["unique_model_name"] = eval_name
benchmark_config["conf"]["reasoning"] = reasoning
# Set base_model
benchmark_config["conf"]["base_model"] = base_model
# Add email if valid
if valid_email:
benchmark_config["conf"]["email"] = valid_email
# Create a unique user_id based ONLY on username
if username is not None:
# Ensure username is a simple string
if not isinstance(username, str):
username = str(username)
# Limit username length to avoid issues
if len(username) > 100:
username = username[:100]
# Create a unique hash from username only
user_id = hashlib.md5(username.encode()).hexdigest()
# Add user_id to the configuration
benchmark_config["conf"]["user_id"] = user_id
# Create a separate request_id based on repo_id, base_model and reasoning
request_hash_input = f"{hf_repo}_{base_model}_{reasoning}"
request_id = hashlib.md5(request_hash_input.encode()).hexdigest()
# Add request_id to the configuration
benchmark_config["conf"]["request_id"] = request_id
# Still add username for backward compatibility
benchmark_config["conf"]["username"] = username
else:
# Username is required for the request, so don't proceed
logger.error("Username not available, cannot submit benchmark request")
return styled_error("Authentication error. Username not available."), {}
# Execute the unified benchmark request
logger.info("Submitting benchmark task")
results = runner.run_all_benchmarks_with_config(benchmark_config)
# Format result for UI display
dag_run_info = {}
if results.get("status") == "success" and "unified" in results.get("results", {}):
unified_result = results["results"]["unified"]
if "run_id" in unified_result:
dag_run_info = {
"dag_run_id": unified_result["run_id"],
"dag_id": DAG_IDS["unified"],
"status": "queued"
}
# Create simple success/error message
if results["status"] == "success":
success_msg = f"Benchmark started for {hf_repo} (Type: {model_type})"
if valid_email:
success_msg += f". Results will be sent to {valid_email}."
result_message = styled_message(success_msg)
logger.info("Benchmark successfully submitted")
else:
# Log the error but show simplified message
logger.error(f"Benchmark submission failed")
result_message = styled_error("Failed to start benchmark")
# Return message and run info
return result_message, dag_run_info
except Exception as e:
# Log the full error
logger.error(f"Error during benchmark submission: {str(e)}")
logger.error(f"Exception details: {traceback.format_exc()}")
# Return simplified error message
return styled_error("An error occurred while submitting the benchmark"), {}
def get_model_information(hf_repo: str, display_full_info: bool = True) -> Tuple[str, dict]:
"""
Get model type and information.
Args:
hf_repo: Model repository ID
display_full_info: Whether to include detailed information in the returned message
Returns:
Tuple[str, dict]: A tuple containing:
- message: Formatted message about the model
- model_info: Dictionary with model information
"""
try:
logger.info("Analyzing model information")
model_data = check_model_type(hf_repo)
if "error" in model_data.get("info", {}):
error_message = model_data["info"]["error"]
logger.error("Model analysis failed")
return styled_error("Failed to analyze model"), {}
# If we don't need to display full info, return minimal message
if not display_full_info:
logger.info("Model analysis completed")
return f"Model analysis completed.", model_data
model_type = model_data.get("model_type", "unknown")
info = model_data.get("info", {})
# Format a nice message with full information
message = f"<div style='text-align: left;'>"
message += f"<h3>Model: {hf_repo}</h3>"
message += f"<p><b>Type:</b> {model_type.capitalize()}</p>"
if "base_model" in info:
message += f"<p><b>Base Model:</b> {info['base_model']}</p>"
message += "</div>"
logger.info("Model analysis completed with full information")
return message, model_data
except Exception as e:
# Log the error but don't show details to user
logger.error("Error during model analysis")
return styled_error("Failed to get model information"), {}
def check_user_login(profile):
if profile is None:
return False, "Please log in with your Hugging Face account to submit models for benchmarking."
# In some environments, profile may be a string instead of a profile object
if isinstance(profile, str):
if profile == "":
return False, "Please log in with your Hugging Face account to submit models for benchmarking."
return True, f"Logged in as {profile}"
# Normal case where profile is an object with username attribute
return True, f"Logged in as {profile.username}" |