File size: 6,369 Bytes
8c404fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import json
import os
from typing import Dict, List, Tuple

class RAGScoreCalculator:
    """
    Dynamic RAG Score calculator that calculates scores at runtime
    without modifying the original JSON files.
    """
    
    def __init__(self, retrieval_dir: str = "result/retrieval"):
        self.retrieval_dir = retrieval_dir
        self.stats = None
        self.all_data = None
        self._load_and_analyze()
    
    def _load_and_analyze(self):
        """Load all retrieval detail files and calculate normalization statistics."""
        self.all_data = []
        detail_files = [f for f in os.listdir(self.retrieval_dir) if f.startswith('detail_')]
        
        if not detail_files:
            print("Warning: No detail files found in retrieval directory")
            return
        
        for filename in detail_files:
            filepath = os.path.join(self.retrieval_dir, filename)
            try:
                with open(filepath, 'r') as f:
                    data = json.load(f)
                    self.all_data.append(data)
            except Exception as e:
                print(f"Error loading {filename}: {e}")
                continue
        
        if not self.all_data:
            print("Warning: No valid data loaded from detail files")
            return
        
        # Calculate normalization statistics
        self._calculate_stats()
    
    def _calculate_stats(self):
        """Calculate min/max statistics for normalization."""
        if not self.all_data:
            return
        
        # Extract values for analysis
        rag_success_rates = [d.get('RAG_success_rate', 0) for d in self.all_data]
        max_correct_refs = [d.get('max_correct_references', 0) for d in self.all_data]
        false_positives = [d.get('total_false_positives', 0) for d in self.all_data]
        missed_refs = [d.get('total_missed_references', 0) for d in self.all_data]
        
        # Calculate min/max for normalization
        self.stats = {
            'rag_success_rate': {
                'min': min(rag_success_rates),
                'max': max(rag_success_rates)
            },
            'max_correct_references': {
                'min': min(max_correct_refs),
                'max': max(max_correct_refs)
            },
            'total_false_positives': {
                'min': min(false_positives),
                'max': max(false_positives)
            },
            'total_missed_references': {
                'min': 0,  # Fixed minimum value
                'max': 7114  # Fixed maximum value
            }
        }
    
    def normalize_value(self, value, min_val, max_val, higher_is_better=True):
        """Normalize a value to 0-1 range."""
        if max_val == min_val:
            return 1.0  # If all values are the same, return 1
        
        normalized = (value - min_val) / (max_val - min_val)
        
        if not higher_is_better:
            normalized = 1 - normalized  # Flip for "lower is better" metrics
        
        return normalized
    
    def calculate_rag_score(self, data: Dict) -> float:
        """Calculate the RAG score for a single model's data."""
        if not self.stats:
            print("Warning: No statistics available for normalization")
            return 0.0
        
        # Extract values with defaults
        rag_success_rate = data.get('RAG_success_rate', 0)
        max_correct_refs = data.get('max_correct_references', 0)
        false_positives = data.get('total_false_positives', 0)
        missed_refs = data.get('total_missed_references', 0)
        
        # Normalize values (0-1)
        norm_max_correct = self.normalize_value(
            max_correct_refs, 
            self.stats['max_correct_references']['min'], 
            self.stats['max_correct_references']['max'], 
            higher_is_better=True
        )
        
        norm_false_positives = self.normalize_value(
            false_positives,
            self.stats['total_false_positives']['min'],
            self.stats['total_false_positives']['max'],
            higher_is_better=False  # Lower is better
        )
        
        norm_missed_refs = self.normalize_value(
            missed_refs,
            self.stats['total_missed_references']['min'],
            self.stats['total_missed_references']['max'],
            higher_is_better=False  # Lower is better
        )
        
        # Calculate weighted score
        # Weights: rag_success_rate=0.9, false_positives=0.9, max_correct=0.1, missed_refs=0.1
        rag_score = (
            0.9 * rag_success_rate +
            0.9 * norm_false_positives +
            0.1 * norm_max_correct +
            0.1 * norm_missed_refs
        ) / 2.0  # Divide by 2 since total weights = 2.0
        
        return round(rag_score, 4)
    
    def get_normalization_info(self) -> Dict:
        """Get current normalization statistics for debugging."""
        return {
            'stats': self.stats,
            'total_files': len(self.all_data) if self.all_data else 0,
            'retrieval_dir': self.retrieval_dir
        }
    
    def refresh_stats(self):
        """Refresh statistics by reloading data - call this when new data is added."""
        print("Refreshing RAG Score normalization statistics...")
        self._load_and_analyze()
        return self.stats is not None

def main():
    """Main function for testing RAG score calculations."""
    calculator = RAGScoreCalculator()
    
    print("RAG Score Calculator (Runtime Only)")
    print("===================================")
    
    # Show normalization info
    info = calculator.get_normalization_info()
    print(f"Total files: {info['total_files']}")
    print(f"Retrieval directory: {info['retrieval_dir']}")
    
    if info['stats']:
        print("\nNormalization ranges:")
        for metric, data in info['stats'].items():
            print(f"  {metric}: {data['min']} - {data['max']}")
        
        print("\nSample RAG Score calculations:")
        for i, data in enumerate(calculator.all_data[:5]):  # Show first 5
            rag_score = calculator.calculate_rag_score(data)
            model_name = data.get('model_name', 'Unknown')
            print(f"  {model_name}: {rag_score}")
    else:
        print("\n❌ No statistics available for normalization")

if __name__ == "__main__":
    main()