|
import json |
|
import os |
|
import re |
|
from collections import defaultdict |
|
from datetime import datetime, timedelta, timezone |
|
import logging |
|
|
|
import huggingface_hub |
|
from huggingface_hub import ModelCard, HfApi, hf_hub_download |
|
from huggingface_hub.hf_api import ModelInfo |
|
from transformers import AutoConfig |
|
from transformers.models.auto.tokenization_auto import tokenizer_class_from_name, get_tokenizer_config |
|
|
|
logger = logging.getLogger(__name__) |
|
logger.setLevel(logging.INFO) |
|
|
|
def check_model_card(repo_id: str) -> tuple[bool, str]: |
|
"""Checks if the model card and license exist and have been filled""" |
|
try: |
|
card = ModelCard.load(repo_id) |
|
except huggingface_hub.utils.EntryNotFoundError: |
|
return False, "Please add a model card to your model to explain how you trained/fine-tuned it." |
|
|
|
|
|
if card.data.license is None: |
|
if not ("license_name" in card.data and "license_link" in card.data): |
|
return False, ( |
|
"License not found. Please add a license to your model card using the `license` metadata or a" |
|
" `license_name`/`license_link` pair." |
|
) |
|
|
|
|
|
if len(card.text) < 200: |
|
return False, "Please add a description to your model card, it is too short." |
|
|
|
return True, "" |
|
|
|
|
|
def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]: |
|
"""Makes sure the model is on the hub, and uses a valid configuration (in the latest transformers version)""" |
|
try: |
|
config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token) |
|
if test_tokenizer: |
|
tokenizer_config = get_tokenizer_config(model_name) |
|
if tokenizer_config is not None: |
|
tokenizer_class_candidate = tokenizer_config.get("tokenizer_class", None) |
|
else: |
|
tokenizer_class_candidate = config.tokenizer_class |
|
|
|
|
|
tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate) |
|
if tokenizer_class is None: |
|
return ( |
|
False, |
|
f"uses {tokenizer_class_candidate}, which is not in a transformers release, therefore not supported at the moment.", |
|
None |
|
) |
|
return True, None, config |
|
|
|
except ValueError: |
|
return ( |
|
False, |
|
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.", |
|
None |
|
) |
|
|
|
except Exception as e: |
|
return False, "was not found on hub!", None |
|
|
|
|
|
def get_model_size(model_info: ModelInfo, precision: str): |
|
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information.""" |
|
try: |
|
model_size = round(model_info.safetensors["total"] / 1e9, 3) |
|
except (AttributeError, TypeError): |
|
return 0 |
|
|
|
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1 |
|
model_size = size_factor * model_size |
|
return model_size |
|
|
|
def get_model_arch(model_info: ModelInfo): |
|
"""Gets the model architecture from the configuration""" |
|
return model_info.config.get("architectures", "Unknown") |
|
|
|
def already_submitted_models(requested_models_dir: str) -> set[str]: |
|
depth = 1 |
|
file_names = [] |
|
users_to_submission_dates = defaultdict(list) |
|
|
|
for root, _, files in os.walk(requested_models_dir): |
|
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep) |
|
if current_depth == depth: |
|
for file in files: |
|
if not file.endswith(".json"): |
|
continue |
|
with open(os.path.join(root, file), "r") as f: |
|
info = json.load(f) |
|
file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}") |
|
|
|
|
|
if info["model"].count("/") == 0 or "submitted_time" not in info: |
|
continue |
|
organisation, _ = info["model"].split("/") |
|
users_to_submission_dates[organisation].append(info["submitted_time"]) |
|
|
|
return set(file_names), users_to_submission_dates |
|
|
|
def check_adapter_config_and_base_model(model_name: str, base_model: str, token: str = None) -> tuple[bool, str]: |
|
""" |
|
Checks if the model exists on HuggingFace and is accessible. |
|
|
|
Args: |
|
model_name: Name of the model to check |
|
base_model: Expected base model name (not used anymore) |
|
token: HuggingFace API token (optional) |
|
|
|
Returns: |
|
Tuple[bool, str]: A tuple containing: |
|
- is_valid: Whether the model exists and is accessible |
|
- error_message: Error message if the model is invalid |
|
""" |
|
try: |
|
|
|
|
|
try: |
|
|
|
api_public = HfApi() |
|
model_info = api_public.model_info(repo_id=model_name) |
|
logger.debug(f"Successfully accessed model {model_name}") |
|
return True, None |
|
except Exception as e: |
|
logger.debug(f"Could not access model without token") |
|
|
|
if token: |
|
try: |
|
api_with_token = HfApi(token=token) |
|
model_info = api_with_token.model_info(repo_id=model_name) |
|
logger.debug(f"Successfully accessed model {model_name} with authentication") |
|
return True, None |
|
except Exception as e: |
|
return False, f"Model {model_name} not found or not accessible: {str(e)}" |
|
else: |
|
return False, f"Model {model_name} not found or not accessible: {str(e)}" |
|
except Exception as e: |
|
return False, f"Error validating model: {str(e)}" |
|
|
|
def has_adapter_config(model_name: str, token: str = None) -> tuple[bool, str]: |
|
""" |
|
Checks if the model repository contains adapter configuration files. |
|
|
|
Args: |
|
model_name: Name of the model to check |
|
token: HuggingFace API token (optional) |
|
|
|
Returns: |
|
Tuple[bool, str]: A tuple containing: |
|
- has_adapter: Whether the model contains adapter configuration |
|
- message: Additional information or error message |
|
""" |
|
try: |
|
|
|
api = HfApi(token=token) if token else HfApi() |
|
|
|
|
|
repo_files = api.list_repo_files(repo_id=model_name) |
|
|
|
|
|
adapter_files = [ |
|
"adapter_config.json", |
|
"adapter_model.bin", |
|
"adapter_model.safetensors", |
|
"adapter.json", |
|
"adapter.safetensors", |
|
"adapter.bin" |
|
] |
|
|
|
|
|
found_adapter_files = [] |
|
for file in repo_files: |
|
file_lower = file.lower() |
|
if any(adapter_file.lower() in file_lower for adapter_file in adapter_files): |
|
found_adapter_files.append(file) |
|
|
|
|
|
has_adapter = len(found_adapter_files) > 0 |
|
|
|
if has_adapter: |
|
adapter_files_str = ", ".join(found_adapter_files) |
|
return True, f"Found adapter configuration: {adapter_files_str}" |
|
else: |
|
return False, "No adapter configuration found" |
|
|
|
except Exception as e: |
|
return False, f"Error checking for adapter configuration: {str(e)}" |
|
|
|
def has_safetensor_model(model_name: str, token: str = None) -> tuple[bool, str]: |
|
""" |
|
Checks if the model repository contains safetensor model files. |
|
|
|
Args: |
|
model_name: Name of the model to check |
|
token: HuggingFace API token (optional) |
|
|
|
Returns: |
|
Tuple[bool, str]: A tuple containing: |
|
- has_safetensor: Whether the model contains safetensor model files |
|
- message: Additional information or error message |
|
""" |
|
try: |
|
|
|
api = HfApi(token=token) if token else HfApi() |
|
|
|
|
|
repo_files = api.list_repo_files(repo_id=model_name) |
|
|
|
|
|
safetensor_files = [] |
|
model_pattern = "model_" |
|
safetensor_extension = ".safetensors" |
|
|
|
for file in repo_files: |
|
file_lower = file.lower() |
|
if model_pattern in file_lower and file_lower.endswith(safetensor_extension): |
|
safetensor_files.append(file) |
|
|
|
|
|
has_safetensor = len(safetensor_files) > 0 |
|
|
|
if has_safetensor: |
|
safetensor_files_str = ", ".join(safetensor_files) |
|
return True, f"Found safetensor model files: {safetensor_files_str}" |
|
else: |
|
|
|
any_safetensor_files = [file for file in repo_files if file.lower().endswith(safetensor_extension)] |
|
|
|
if any_safetensor_files: |
|
safetensor_files_str = ", ".join(any_safetensor_files) |
|
return True, f"Found safetensor files: {safetensor_files_str}" |
|
else: |
|
return False, "No safetensor model files found" |
|
|
|
except Exception as e: |
|
return False, f"Error checking for safetensor model files: {str(e)}" |
|
|
|
def determine_model_type(model_name: str, token: str = None) -> tuple[str, str]: |
|
""" |
|
Determines the type of model based on the files in the repository. |
|
|
|
Args: |
|
model_name: Name of the model to check |
|
token: HuggingFace API token (optional) |
|
|
|
Returns: |
|
Tuple[str, str]: A tuple containing: |
|
- model_type: Type of model (adapter, merged_model, unknown) |
|
- message: Additional information or details |
|
""" |
|
try: |
|
|
|
has_adapter, adapter_message = has_adapter_config(model_name, token) |
|
|
|
|
|
has_safetensor, safetensor_message = has_safetensor_model(model_name, token) |
|
|
|
|
|
if has_adapter: |
|
return "adapter", adapter_message |
|
elif has_safetensor: |
|
return "merged_model", safetensor_message |
|
else: |
|
return "unknown", "Could not determine model type: no adapter config or safetensor model files found" |
|
|
|
except Exception as e: |
|
return "unknown", f"Error determining model type: {str(e)}" |
|
|