import gradio as gr import pandas as pd import os import sys import traceback import logging # Disable SSL verification for curl requests if needed os.environ['CURL_CA_BUNDLE'] = '' # Configure minimal logging first thing - before any imports logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) logging.getLogger("httpx").setLevel(logging.ERROR) logging.getLogger("urllib3").setLevel(logging.ERROR) logging.getLogger("matplotlib").setLevel(logging.WARNING) logging.getLogger("huggingface_hub").setLevel(logging.ERROR) from gradio.oauth import OAuthProfile from src.display.about import ( CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE, ) from src.display.css_html_js import custom_css from src.utils import ( restart_space, load_benchmark_results, create_benchmark_plots, create_combined_leaderboard_table, create_evalmix_table, create_light_eval_table, create_raw_details_table, create_human_arena_table, update_supported_base_models ) # Pipelines utils fonksiyonlarını import et from pipelines.utils.common import search_and_filter from pipelines.unified_benchmark import submit_unified_benchmark # Evaluation types EVAL_TYPES = ["EvalMix", "RAG-Judge", "Light-Eval", "Arena", "Snake-Bench"] # Initialize OAuth configuration OAUTH_CLIENT_ID = os.getenv("OAUTH_CLIENT_ID") OAUTH_CLIENT_SECRET = os.getenv("OAUTH_CLIENT_SECRET") OAUTH_SCOPES = os.getenv("OAUTH_SCOPES", "email") OPENID_PROVIDER_URL = os.getenv("OPENID_PROVIDER_URL") SESSION_TIMEOUT_MINUTES = int(os.getenv("HF_OAUTH_EXPIRATION_MINUTES", 30)) def format_dataframe(df, is_light_eval_detail=False): """ Float değerleri 2 ondalık basamağa yuvarla, 'file' sütununu kaldır ve kolon isimlerini düzgün formata getir Args: df: DataFrame to format is_light_eval_detail: If True, use 4 decimal places for light eval detail results """ if df.empty: return df # 'file' sütununu kaldır if 'file' in df.columns: df = df.drop(columns=['file']) # Specifically remove problematic columns columns_to_remove = ["run_id", "user_id", "total_success_references", "Total Success References", "total_eval_samples", "total_samples", "samples_number"] for col in columns_to_remove: if col in df.columns: df = df.drop(columns=[col]) # Float değerleri yuvarlama - light eval detail için 4 hane, diğerleri için 2 hane decimal_places = 4 if is_light_eval_detail else 2 for column in df.columns: try: if pd.api.types.is_float_dtype(df[column]): df[column] = df[column].round(decimal_places) except: continue # Kolon isimlerini düzgün formata getir column_mapping = {} for col in df.columns: # Skip run_id and user_id fields if col.lower() in ["run_id", "user_id"]: continue # Special handling for Turkish Semantic column if "turkish_semantic" in col.lower(): column_mapping[col] = "Turkish Semantic" continue # Special handling for Multilingual Semantic column if "multilingual_semantic" in col.lower(): column_mapping[col] = "Multilingual Semantic" continue # Skip already well-formatted columns or columns that contain special characters if col == "Model Name" or " " in col: # Still process column if it contains "mean" if " mean" in col.lower(): cleaned_col = col.replace(" mean", "").replace(" Mean", "") column_mapping[col] = cleaned_col continue # model_name column should be Model Name if col == "model_name": column_mapping[col] = "Model Name" continue # Remove the word "mean" from column names (case insensitive) cleaned_col = col.replace(" mean", "").replace("_mean", "") # Format column name by replacing underscores with spaces and capitalizing each word formatted_col = " ".join([word.capitalize() for word in cleaned_col.replace("_", " ").split()]) column_mapping[col] = formatted_col # Rename columns with the mapping if column_mapping: df = df.rename(columns=column_mapping) return df # User authentication function def check_user_login(profile): if profile is None: return False, "Please log in with your Hugging Face account to submit models for benchmarking." # In some environments, profile may be a string instead of a profile object if isinstance(profile, str): if profile == "": return False, "Please log in with your Hugging Face account to submit models for benchmarking." return True, f"Logged in as {profile}" # Normal case where profile is an object with username attribute return True, f"Logged in as {profile.username}" def create_demo(): # Get logger for this function logger = logging.getLogger("mezura") with gr.Blocks(css=custom_css) as demo: # Update supported base models at startup logger.info("Updating supported base models at startup...") update_supported_base_models() logger.info("Base models updated successfully") gr.Markdown(TITLE) gr.Markdown(INTRODUCTION_TEXT) # Hidden session state to track login expiration session_expiry = gr.State(None) try: # Benchmark sonuçlarını yükle benchmark_results = load_benchmark_results() default_plots = create_benchmark_plots(benchmark_results, "avg") # State variable to track login state across page refreshes login_state = gr.State(value=False) with gr.Tabs() as tabs: with gr.TabItem("🏆 LLM Benchmark", elem_id="llm-benchmark-tab"): gr.Markdown("## Model Evaluation Results") gr.Markdown("This screen shows model performance across different evaluation categories.") # Remove the separate refresh button row # Instead, combine search and refresh in one row with gr.Row(): search_input = gr.Textbox( label="🔍 Search for your model (separate multiple queries with `;`) and press ENTER...", placeholder="Enter model name or evaluation information...", show_label=False ) # # Update refresh button to be orange with "Refresh Results" text # refresh_button = gr.Button("🔄 Refresh Results", variant="primary") # # Status display for refresh results # refresh_status = gr.Markdown("", visible=False) # Benchmark tablarını semboller içeren tab grubuyla göster with gr.Tabs() as benchmark_tabs: with gr.TabItem("🏆 Leaderboard"): # Birleşik leaderboard tablosu - avg_json dosyalarındaki tüm bilgileri göster # Only use default data (avg files) for the leaderboard combined_df = create_combined_leaderboard_table(benchmark_results) # Float değerleri formatlama combined_df = format_dataframe(combined_df) # Tüm sütunları göster if not combined_df.empty: leaderboard_df = combined_df.copy() else: leaderboard_df = pd.DataFrame({"Model Name": ["No data available"]}) # Orijinal veriyi saklayacak state değişkeni original_leaderboard_data = gr.State(value=leaderboard_df) combined_table = gr.DataFrame( value=leaderboard_df, label="Model Performance Comparison", interactive=False, column_widths=["300px", "165px" ,"165px", "120px", "120px", "180px", "220px", "100px", "100px", "120px"] ) with gr.TabItem("🏟️ Auto Arena"): # Arena sonuçları - detail dosyalarını kullan arena_details_df = create_raw_details_table(benchmark_results, "arena") arena_details_df = format_dataframe(arena_details_df) if arena_details_df.empty: arena_details_df = pd.DataFrame({"model_name": ["No data available"]}) arena_table = gr.DataFrame( value=arena_details_df, label="Arena Detailed Results", interactive=False, column_widths=["300px", "150px", "110px", "110px", "180px", "100px", "120px"] ) with gr.TabItem("👥 Human Arena"): # Human Arena sonuçları - detail dosyalarını kullan human_arena_data = benchmark_results["raw"]["human_arena"] if human_arena_data: human_arena_df = create_human_arena_table(human_arena_data) else: human_arena_df = pd.DataFrame() human_arena_df = format_dataframe(human_arena_df) if human_arena_df.empty: human_arena_df = pd.DataFrame({"Model Name": ["No data available"]}) human_arena_table = gr.DataFrame( value=human_arena_df, label="Human Arena Results", interactive=False, column_widths=["300px", "150px", "110px", "110px", "110px", "156px", "169px", "100px", "120px"] ) with gr.TabItem("📚 Retrieval"): # RAG Judge sonuçları - detail dosyalarını kullan rag_details_df = create_raw_details_table(benchmark_results, "retrieval") rag_details_df = format_dataframe(rag_details_df) if rag_details_df.empty: rag_details_df = pd.DataFrame({"model_name": ["No data available"]}) rag_table = gr.DataFrame( value=rag_details_df, label="Retrieval Detailed Results", interactive=False, column_widths=["280px", "120px", "140px", "140px", "140px", "120px", "160px", "100px", "120px"] ) with gr.TabItem("⚡ Light Eval"): # Light Eval sonuçları - detail dosyalarını kullan light_details_data = benchmark_results["raw"]["light_eval"] if light_details_data: light_details_df = create_light_eval_table(light_details_data, is_detail=True) else: light_details_df = pd.DataFrame() light_details_df = format_dataframe(light_details_df, is_light_eval_detail=True) if light_details_df.empty: light_details_df = pd.DataFrame({"model_name": ["No data available"]}) light_table = gr.DataFrame( value=light_details_df, label="Light Eval Detailed Results", interactive=False, column_widths=["300px", "110px", "110px", "143px", "130px", "130px", "110px", "110px", "100px", "120px"] ) with gr.TabItem("📋 EvalMix"): # Hybrid Benchmark sonuçları - detail dosyalarını kullan hybrid_details_df = create_raw_details_table(benchmark_results, "evalmix") hybrid_details_df = format_dataframe(hybrid_details_df) if hybrid_details_df.empty: hybrid_details_df = pd.DataFrame({"model_name": ["No data available"]}) hybrid_table = gr.DataFrame( value=hybrid_details_df, label="EvalMix Detailed Results", interactive=False, column_widths=["300px", "180px", "230px", "143px", "110px", "110px", "110px", "110px", "169px", "220px" ,"100px", "120px"] ) with gr.TabItem("🐍 𝐒𝐧𝐚𝐤𝐞 𝐁𝐞𝐧𝐜𝐡"): # Snake Benchmark sonuçları - detail dosyalarını kullan snake_details_df = create_raw_details_table(benchmark_results, "snake") snake_details_df = format_dataframe(snake_details_df) if snake_details_df.empty: snake_details_df = pd.DataFrame({"model_name": ["No data available"]}) snake_table = gr.DataFrame( value=snake_details_df, label="Snake Benchmark Detailed Results", interactive=False, column_widths=["300px", "130px", "110px", "117px", "110px", "110px", "110px", "117px", "100px", "120px"] ) # with gr.TabItem("📊 LM-Harness"): # # LM Harness sonuçları - detail dosyalarını kullan # lmharness_details_df = create_raw_details_table(benchmark_results, "lm_harness") # lmharness_details_df = format_dataframe(lmharness_details_df) # # if lmharness_details_df.empty: # lmharness_details_df = pd.DataFrame({"model_name": ["No data available"]}) # # lmharness_table = gr.DataFrame( # value=lmharness_details_df, # label="LM Harness Detailed Results", # interactive=False # ) # # Refresh butonu bağlantısı # refresh_button.click( # refresh_leaderboard, # inputs=[], # outputs=[ # refresh_status, # combined_table, # hybrid_table, # rag_table, # light_table, # arena_table, # lmharness_table, # snake_table # ] # ) # Tüm sekmeler için ortak arama fonksiyonu def search_all_tabs(query, original_data): """ Tüm sekmelerde arama yapar """ if not query or query.strip() == "": # Boş arama - orijinal veriyi döndür return (original_data, arena_details_df, human_arena_df, rag_details_df, light_details_df, hybrid_details_df, snake_details_df) # Arama var - tüm sekmeleri filtrele return ( search_and_filter(query, original_data, "All"), search_and_filter(query, arena_details_df, "All"), search_and_filter(query, human_arena_df, "All"), search_and_filter(query, rag_details_df, "All"), search_and_filter(query, light_details_df, "All"), search_and_filter(query, hybrid_details_df, "All"), search_and_filter(query, snake_details_df, "All") ) # Arama fonksiyonu - tüm sekmeleri güncelle search_input.change( search_all_tabs, inputs=[search_input, original_leaderboard_data], outputs=[combined_table, arena_table, human_arena_table, rag_table, light_table, hybrid_table, snake_table] ) with gr.TabItem("ℹ️ About", elem_id="about-tab"): gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") with gr.TabItem("📊 Datasets", elem_id="datasets-tab"): gr.Markdown("## Benchmark Datasets") gr.Markdown(""" This section provides detailed information about the datasets used in our evaluation benchmarks. Each dataset has been carefully selected and adapted to provide comprehensive model evaluation across different domains and capabilities. """) # Create and display the datasets table datasets_html = """

Available Datasets for Evaluation

Dataset Evaluation Task Language Description
malhajar/mmlu_tr-v0.2 Lighteval MMLU Turkish Turkish adaptation of MMLU (Massive Multitask Language Understanding) v0.2 covering 57 academic subjects including mathematics, physics, chemistry, biology, history, law, and computer science. Tests knowledge and reasoning capabilities across multiple domains with multiple-choice questions.
malhajar/truthful_qa-tr-v0.2 Lighteval TruthfulQA Turkish Turkish version of TruthfulQA (v0.2) designed to measure model truthfulness and resistance to generating false information. Contains questions where humans often answer incorrectly due to misconceptions or false beliefs, testing the model's ability to provide accurate information.
malhajar/winogrande-tr-v0.2 Lighteval WinoGrande Turkish Turkish adaptation of WinoGrande (v0.2) focusing on commonsense reasoning through pronoun resolution tasks. Tests the model's ability to understand context, make logical inferences, and resolve ambiguous pronouns in everyday scenarios.
malhajar/hellaswag_tr-v0.2 Lighteval HellaSwag Turkish Turkish version of HellaSwag (v0.2) for commonsense reasoning evaluation. Tests the model's ability to predict plausible continuations of everyday scenarios and activities, requiring understanding of common sense and typical human behavior patterns.
malhajar/arc-tr-v0.2 Lighteval ARC Turkish Turkish adaptation of ARC (AI2 Reasoning Challenge) v0.2 focusing on science reasoning and question answering. Contains grade school level science questions that require reasoning beyond simple factual recall, covering topics in physics, chemistry, biology, and earth science.
malhajar/gsm8k_tr-v0.2 Lighteval GSM8K Turkish Turkish version of GSM8K (Grade School Math 8K) v0.2 for mathematical reasoning evaluation. Contains grade school level math word problems that require multi-step reasoning, arithmetic operations, and logical problem-solving skills to arrive at the correct numerical answer.
newmindai/mezura-eval-data Auto-Arena Turkish mezura-eval dataset is a Turkish-language legal text dataset designed for evaluation tasks with RAG context support. The subsets include domains like Environmental Law, Tax Law, Data Protection Law and Health Law each containing annotated samples. Every row includes structured fields such as the category, concept, input and contextual information drawn from sources like official decisions.
newmindai/mezura-eval-data EvalMix Turkish mezura-eval dataset is a Turkish-language legal text dataset designed for evaluation tasks with RAG context support. The subsets include domains like Environmental Law, Tax Law, Data Protection Law and Health Law each containing annotated samples. Every row includes structured fields such as the category, concept, input and contextual information drawn from sources like official decisions.
newmindai/mezura-eval-data Retrieval Turkish mezura-eval dataset is a Turkish-language legal text dataset designed for evaluation tasks with RAG context support. The subsets include domains like Environmental Law, Tax Law, Data Protection Law and Health Law each containing annotated samples. Every row includes structured fields such as the category, concept, input and contextual information drawn from sources like official decisions.
""" gr.HTML(datasets_html) with gr.TabItem("🔬 Evaluation", elem_id="evaluation-tab"): gr.Markdown("""

Model Evaluation

### Evaluation Process: 1. **Login to Your Hugging Face Account** - You must be logged in to submit models for evaluation 2. **Enter Model Name** - Input the HuggingFace model name or path you want to evaluate - Example: meta-llama/Meta-Llama-3.1-70B-Instruct 3. **Select Base Model** - Choose the base model from the dropdown list - The system will verify if your repository is a valid HuggingFace repository - It will check if the model is trained from the selected base model 4. **Start Evaluation** - Click the "Start All Benchmarks" button to begin the evaluation - If validation passes, your request will be processed - If validation fails, you'll see an error message ### Important Limitations: - The model repository must be a maximum of 750 MB in size. - For trained adapters, the maximum LoRA rank must be 32. """) # Authentication Component (Always visible) auth_container = gr.Group() with auth_container: # Simplified login button - Gradio will handle the OAuth login_button = gr.LoginButton() # Get base models from API from api.config import get_base_model_list BASE_MODELS = get_base_model_list() # Fallback to static list if API list is empty if not BASE_MODELS: BASE_MODELS = [ "meta-llama/Meta-Llama-3.1-8B-Instruct", "meta-llama/Llama-3.2-3B-Instruct", "meta-llama/Llama-3.3-70B-Instruc", "Qwen/Qwen2.5-72B-Instruct", "Qwen/QwQ-32B", "google/gemma-2-2b-it" ] # Content that's only visible when logged in login_dependent_content = gr.Group(visible=False) with login_dependent_content: gr.Markdown("### Model Submission") # Model input model_to_evaluate = gr.Textbox( label="Adapter Repo ID", placeholder="e.g., valadapt/llama-3-8b-turkish" ) # Add note about supported model types gr.Markdown(""" **Note:** Currently, only adapter models are supported. Merged models are not yet supported. """, elem_classes=["info-text"]) # Base model selection base_model_dropdown = gr.Dropdown( choices=BASE_MODELS, label="Base Model", allow_custom_value=True ) # Reasoning capability checkbox reasoning_checkbox = gr.Checkbox( label="Reasoning", value=False, info="Enable reasoning capability during evaluation" ) # Email input email_input = gr.Textbox( label="Email Address", placeholder="example@domain.com", info="You'll receive notification when benchmark is complete" ) # Submit button - CRITICAL: This submit button is only visible when logged in submit_button = gr.Button("Start All Benchmarks", variant="primary") # Result area (initially empty) result_output = gr.Markdown("") # Status area for authentication errors (initially hidden) auth_error = gr.Markdown(visible=False) # Function to handle login visibility def toggle_form_visibility(profile): # User is not logged in if profile is None: return ( gr.update(visible=False), gr.update( visible=True, value="

Authentication required. Please log in with your Hugging Face account to submit models.

" ) ) # Log successful authentication try: if hasattr(profile, 'name'): username = profile.name elif hasattr(profile, 'username'): username = profile.username else: username = str(profile) logger.info(f"User authenticated: {username}") except Exception as e: logger.info(f"LOGIN - Error inspecting profile: {str(e)}") # User is logged in - show form, hide error return ( gr.update(visible=True), gr.update(visible=False, value="") ) # Connect login button to visibility toggle login_button.click( fn=toggle_form_visibility, inputs=[login_button], outputs=[login_dependent_content, auth_error] ) # Check visibility on page load demo.load( fn=toggle_form_visibility, inputs=[login_button], outputs=[login_dependent_content, auth_error] ) # Handle submission with authentication check def submit_model(model, base_model, reasoning, email, profile): # Authentication check if profile is None: logging.warning("Unauthorized submission attempt with no profile") return "

Authentication required. Please log in with your Hugging Face account.

" # IMPORTANT: In local development, Gradio returns "Sign in with Hugging Face" string # This is NOT a real authentication, just a placeholder for local testing if isinstance(profile, str) and profile == "Sign in with Hugging Face": # Block submission in local dev with mock auth return "

⚠️ HF authentication required.

" # Email is required if not email or email.strip() == "": return "

Email address is required to receive benchmark results.

" # Check if the model is a merged model (not supported) try: from src.submission.check_validity import determine_model_type model_type, _ = determine_model_type(model) if model_type == "merged_model" or model_type == "merge": return "

Merged models are not supported yet. Please submit an adapter model instead.

" except Exception as e: # If error checking model type, continue with submission logging.warning(f"Error checking model type: {str(e)}") # Call the benchmark function with profile information # base_model validasyonunu kaldırdık ama parametre olarak yine de gönderiyoruz result_message, _ = submit_unified_benchmark(model, base_model, reasoning, email, profile) logging.info(f"Submission processed for model: {model}") return result_message # Connect submit button submit_button.click( fn=submit_model, inputs=[ model_to_evaluate, base_model_dropdown, reasoning_checkbox, email_input, login_button ], outputs=[result_output] ) except Exception as e: traceback.print_exc() gr.Markdown(f"## Error: An issue occurred while loading the LLM Benchmark screen") gr.Markdown(f"Error message: {str(e)}") gr.Markdown("Please check your configuration and try again.") # Citation information at the bottom gr.Markdown("---") with gr.Accordion(CITATION_BUTTON_LABEL, open=False): gr.Textbox( value=CITATION_BUTTON_TEXT, lines=10, show_copy_button=True, label=None ) return demo if __name__ == "__main__": # Get app logger logger = logging.getLogger("mezura") # Additional sensitive filter for remaining logs class SensitiveFilter(logging.Filter): def filter(self, record): msg = record.getMessage().lower() # Filter out messages with tokens, URLs with sign= in them, etc sensitive_patterns = ["token", "__sign=", "request", "auth", "http request"] return not any(pattern in msg.lower() for pattern in sensitive_patterns) # Apply the filter to all loggers for logger_name in logging.root.manager.loggerDict: logging.getLogger(logger_name).addFilter(SensitiveFilter()) try: logger.info("Creating demo...") demo = create_demo() logger.info("Launching demo on 0.0.0.0...") # Add options to fix the session.pop error demo.launch( server_name="0.0.0.0", server_port=7860 ) except FileNotFoundError as e: logger.critical(f"Configuration file not found: {e}") print(f"\n\nERROR: Configuration file not found. Please ensure config/api_config.yaml exists.\n{e}\n") sys.exit(1) except ValueError as e: logger.critical(f"Configuration error: {e}") print(f"\n\nERROR: Invalid configuration. Please check your config/api_config.yaml file.\n{e}\n") sys.exit(1) except Exception as e: logger.critical(f"Could not launch demo: {e}", exc_info=True)