Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,401 Bytes
a19f6ba 3dddfe4 a19f6ba 3dddfe4 a19f6ba 3dddfe4 a19f6ba 3dddfe4 a19f6ba 2489e6a a19f6ba 3dddfe4 a19f6ba 3dddfe4 a19f6ba 3dddfe4 a19f6ba 3dddfe4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
import os.path
import uuid
import lancedb
import pyarrow as pa
from PIL import Image
from scipy.spatial import distance
from tqdm import tqdm
import spaces
import utils
from configs import settings
from embeder import MultimodalEmbedder
from transcriber import AudioTranscriber
class VideoRAG:
"""Video RAG (Retrieval-Augmented Generation) system for processing and searching video content."""
def __init__(self, video_frame_rate: float = 1, audio_segment_length: int = 300):
self.video_frame_rate = video_frame_rate
self.audio_segment_length = audio_segment_length
print('Loading embedding and audio transcription models...')
self.embedder = MultimodalEmbedder(
text_model=settings.TEXT_EMBEDDING_MODEL,
image_model=settings.IMAGE_EMBEDDING_MODEL,
)
self.transcriber = AudioTranscriber()
# init DB and tables
self._init_db()
def _init_db(self):
print('Initializing LanceDB...')
self.db = lancedb.connect(f'{settings.DATA_DIR}/vectordb')
self.frames_table = self.db.create_table('frames', mode='overwrite', schema=pa.schema([
pa.field('vector', pa.list_(pa.float32(), self.embedder.image_embedding_size)),
pa.field('video_id', pa.string()),
pa.field('frame_index', pa.int32()),
pa.field('frame_path', pa.string()),
]))
self.transcripts_table = self.db.create_table('transcripts', mode='overwrite', schema=pa.schema([
pa.field('vector', pa.list_(pa.float32(), self.embedder.text_embedding_size)),
pa.field('video_id', pa.string()),
pa.field('segment_index', pa.int32()),
pa.field('start', pa.float64()),
pa.field('end', pa.float64()),
pa.field('text', pa.string()),
]))
# save video metadata
self.videos = {}
def is_video_exists(self, video_id: str) -> bool:
"""Check if a video exists in the RAG system by video ID.
Args:
video_id (str): The ID of the video to check.
Returns:
bool: True if the video exists, False otherwise.
"""
return video_id in self.videos
def get_video(self, video_id: str) -> dict:
"""Retrieve video metadata by video ID.
Args:
video_id (str): The ID of the video to retrieve.
Returns:
dict: A dictionary containing video metadata, including video path, frame directory, frame rate, and transcript segments.
"""
if video_id not in self.videos:
raise ValueError(f'Video with ID {video_id} not found.')
return self.videos[video_id]
def index(self, video_path: str) -> str:
"""Index a video file into the RAG system by extracting frames, transcribing audio, and computing embeddings.
Args:
video_path (str): The path to the video file to be indexed.
Returns:
str: A unique video ID generated for the indexed video.
"""
# create a unique video ID
video_id = uuid.uuid4().hex[:8]
print(f'Indexing video "{video_path}" with ID {video_id} to the RAG system...')
print('Extracting video frames')
# process video frames
frame_paths = utils.extract_video_frames(
video_path,
output_dir=f'{video_path}_frames',
frame_rate=self.video_frame_rate,
max_size=settings.MAX_VIDEO_RESOLUTION
)
print('Extracting audio from video')
# transcribe video to text
audio_path = utils.extract_audio(video_path)
print(f'Splitting and transcribing audio...')
segments = []
for i, segment_path in tqdm(enumerate(utils.split_media_file(
audio_path,
output_dir=f'{video_path}_audio_segments',
segment_length=self.audio_segment_length
)), desc='Transcribing audio'):
for segment in self.transcriber.transcribe(segment_path)['segments']:
segment['start'] += i * self.audio_segment_length
segment['end'] += i * self.audio_segment_length
segments.append(segment)
segments = sorted(segments, key=lambda s: s['start'])
print(f'Computing embeddings for audio transcripts and video frames...')
transcript_embeddings, frame_embeddings = compute_embeddings(
self.embedder,
texts=[s['text'] for s in segments],
images=frame_paths
)
# add transcripts to the database
self.transcripts_table.add(
[{
'vector': transcript_embeddings[i],
'video_id': video_id,
'segment_index': i,
'start': segment['start'],
'end': segment['end'],
'text': segment['text'],
} for i, segment in enumerate(segments)],
)
print(f'Added {len(segments)} transcript segments to the database.')
# get significant frames to reduce the number of frames
frame_indexes = get_significant_frames(frame_embeddings, threshold=0.95)
print(f'Found {len(frame_indexes)} significant frames out of {len(frame_embeddings)} total frames.')
# add frames to the database
self.frames_table.add(
[{
'vector': frame_embeddings[i],
'video_id': video_id,
'frame_index': i,
'frame_path': frame_paths[i],
} for i in frame_indexes]
)
print(f'Added {len(frame_indexes)} significant frames to the database.')
# add video metadata to the database
self.videos[video_id] = {
'video_path': video_path,
'video_duration': utils.get_media_duration(video_path),
'frame_dir': f'{video_path}_frames',
'video_frame_rate': self.video_frame_rate,
'transcript_segments': segments,
}
print(f'Video "{video_path}" indexed with ID {video_id}.')
return video_id
def search(self, video_id: str, text: str = None, image: str | Image.Image = None, limit: int = 10) -> list[dict]:
"""Search for relevant video frames or transcripts based on text or image input.
Args:
video_id (str): The ID of the video to search in.
text (str, optional): The text query to search for in the video transcripts.
image (str | Image.Image, optional): The image query to search for in the video frames. If a string is provided, it should be the path to the image file.
limit (int, optional): The maximum number of results to return. Defaults to 10.
Returns:
list[dict]: A list of dictionaries containing the search results, each with start and end times, distance, frame paths, and transcript segments.
"""
video_metadata = self.get_video(video_id)
timespans = []
if text is not None:
text_embedding = self.embedder.embed_texts([text], kind='query')[0]
# search for transcripts based on text
query = (self.transcripts_table
.search(text_embedding)
.where(f'video_id = \'{video_id}\'')
.limit(limit))
for result in query.to_list():
similarity = self.embedder.similarity(
[text_embedding],
[result['vector']],
pair_type='text-text'
)[0][0]
timespans.append({
'start': result['start'],
'end': result['end'],
'similarity': similarity,
})
# search for frames based on text
query = (self.frames_table
.search(text_embedding)
.where(f'video_id = \'{video_id}\'')
.limit(limit))
for result in query.to_list():
similarity = self.embedder.similarity(
[text_embedding],
[result['vector']],
pair_type='text-image'
)[0][0]
start = result['frame_index'] / self.video_frame_rate
timespans.append({
'start': start,
'end': start + 1,
'similarity': similarity,
})
if image is not None:
image_embedding = self.embedder.embed_images([image])[0]
# search for frames based on image
query = (self.frames_table
.search(image_embedding)
.where(f'video_id = \'{video_id}\'')
.limit(limit))
for result in query.to_list():
similarity = self.embedder.similarity(
[image_embedding],
[result['vector']],
pair_type='image-image'
)[0][0]
start = result['frame_index'] / self.video_frame_rate
timespans.append({
'start': start,
'end': start + 1,
'similarity': similarity,
})
# search for transcripts based on image
query = (self.transcripts_table
.search(image_embedding)
.where(f'video_id = \'{video_id}\'')
.limit(limit))
for result in query.to_list():
similarity = self.embedder.similarity(
[image_embedding],
[result['vector']],
pair_type='text-image'
)[0][0]
timespans.append({
'start': result['start'],
'end': result['end'],
'similarity': similarity,
})
# merge nearby timespans
timespans = merge_searched_timespans(timespans, threshold=5)
# sort timespans by distance
timespans = sorted(timespans, key=lambda x: x['similarity'], reverse=True)
# limit to k results
timespans = timespans[:limit]
for timespan in timespans:
# extend timespans to at least 5 seconds
duration = timespan['end'] - timespan['start']
if duration < 5:
timespan['start'] = max(0, timespan['start'] - (5 - duration) / 2)
timespan['end'] = timespan['start'] + 5
# add frame paths
timespan['frame_paths'] = []
for frame_index in range(
int(timespan['start'] * self.video_frame_rate),
int(timespan['end'] * self.video_frame_rate)
):
timespan['frame_paths'].append(os.path.join(video_metadata['frame_dir'], f'{frame_index + 1}.jpg'))
# add transcript segments
timespan['transcript_segments'] = []
for segment in video_metadata['transcript_segments']:
if utils.span_iou((segment['start'], segment['end']),
(timespan['start'], timespan['end'])) > 0:
timespan['transcript_segments'].append(segment)
return timespans
def read(self, video_id: str, start: float, end: float) -> dict:
"""Read a segment of the video by its ID and time range.
Args:
video_id (str): The ID of the video to read.
start (float): The start time of the segment in seconds.
end (float): The end time of the segment in seconds.
Returns:
dict: A dictionary containing the video segment metadata, including start and end times, frame paths, and transcript segments.
"""
video_metadata = self.get_video(video_id)
if start > video_metadata['video_duration'] or end > video_metadata['video_duration']:
raise ValueError(f'Start ({start}) or end ({end}) time exceeds video duration ({video_metadata["video_duration"]}).')
timespan = {
'start': start,
'end': end,
'frame_paths': [],
'transcript_segments': []
}
# add frame paths
for frame_index in range(
int(start * self.video_frame_rate),
int(end * self.video_frame_rate)
):
timespan['frame_paths'].append(os.path.join(video_metadata['frame_dir'], f'{frame_index + 1}.jpg'))
# add transcript segments
for segment in video_metadata['transcript_segments']:
if utils.span_iou((segment['start'], segment['end']),
(start, end)) > 0:
timespan['transcript_segments'].append(segment)
return timespan
def clear(self):
"""Clear the RAG system by dropping all tables and resetting video metadata."""
self._init_db()
@spaces.GPU
def compute_embeddings(
embedder: MultimodalEmbedder,
texts: list[str],
images: list[str | Image.Image]
) -> tuple[list[list[float]], list[list[float]]]:
print(f'Computing embeddings for {len(texts)} texts...')
text_embeddings = embedder.embed_texts(texts, kind='document', device='cuda')
print(f'Computing embeddings for {len(images)} images...')
image_embeddings = embedder.embed_images(images, device='cuda')
return text_embeddings, image_embeddings
def get_significant_frames(frame_embeddings: list[list[float]], threshold: float = 0.8) -> list[int]:
"""Select significant frames by comparing embeddings."""
selected_frames = []
current_frame = 0
for i, embedding in enumerate(frame_embeddings):
similarity = 1 - distance.cosine(frame_embeddings[current_frame], embedding)
if similarity < threshold:
selected_frames.append(current_frame)
current_frame = i
selected_frames.append(current_frame)
return selected_frames
def merge_searched_timespans(timespans: list[dict], threshold: float) -> list[dict]:
"""Merge timespans if the gap between them is less than or equal to threshold."""
if not timespans:
return []
# Sort spans by start time
sorted_spans = sorted(timespans, key=lambda s: s['start'])
merged_spans = []
current_span = sorted_spans[0].copy()
for next_span in sorted_spans[1:]:
gap = next_span['start'] - current_span['end']
if gap <= threshold:
# Extend the current span’s end if needed
current_span['end'] = max(current_span['end'], next_span['end'])
current_span['similarity'] = max(current_span['similarity'], next_span['similarity'])
else:
# No merge push current and start a new one
merged_spans.append(current_span)
current_span = next_span.copy()
# Add the last span
merged_spans.append(current_span)
return merged_spans |