# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import pickle from typing import List, Tuple import faiss import numpy as np from tqdm import tqdm class Indexer(object): def __init__(self, vector_sz,device='cpu'): self.index = faiss.IndexFlatIP(vector_sz) self.device = device if self.device == 'cuda': self.index = faiss.index_cpu_to_all_gpus(self.index) self.index_id_to_db_id = [] def index_data(self, ids, embeddings): self._update_id_mapping(ids) embeddings = embeddings.astype('float32') if not self.index.is_trained: self.index.train(embeddings) self.index.add(embeddings) print(f'Total data indexed {self.index.ntotal}') def search_knn(self, query_vectors: np.array, top_docs: int, index_batch_size: int = 8) -> List[Tuple[List[object], List[float]]]: query_vectors = query_vectors.astype('float32') result = [] nbatch = (len(query_vectors)-1) // index_batch_size + 1 for k in tqdm(range(nbatch)): start_idx = k*index_batch_size end_idx = min((k+1)*index_batch_size, len(query_vectors)) q = query_vectors[start_idx: end_idx] scores, indexes = self.index.search(q, top_docs) # convert to external ids db_ids = [[str(self.index_id_to_db_id[i]) for i in query_top_idxs] for query_top_idxs in indexes] result.extend([(db_ids[i], scores[i]) for i in range(len(db_ids))]) return result def serialize(self, dir_path): index_file = os.path.join(dir_path, 'index.faiss') meta_file = os.path.join(dir_path, 'index_meta.faiss') print(f'Serializing index to {index_file}, meta data to {meta_file}') if self.device == 'cuda': save_index = faiss.index_gpu_to_cpu(self.index) else: save_index = self.index faiss.write_index(save_index, index_file) with open(meta_file, mode='wb') as f: pickle.dump(self.index_id_to_db_id, f) def deserialize_from(self, dir_path): index_file = os.path.join(dir_path, 'index.faiss') meta_file = os.path.join(dir_path, 'index_meta.faiss') print(f'Loading index from {index_file}, meta data from {meta_file}') self.index = faiss.read_index(index_file) if self.device == 'cuda': self.index = faiss.index_cpu_to_all_gpus(self.index) print('Loaded index of type %s and size %d', type(self.index), self.index.ntotal) with open(meta_file, "rb") as reader: self.index_id_to_db_id = pickle.load(reader) assert len( self.index_id_to_db_id) == self.index.ntotal, 'Deserialized index_id_to_db_id should match faiss index size' def _update_id_mapping(self, db_ids: List): self.index_id_to_db_id.extend(db_ids) def reset(self): self.index.reset() self.index_id_to_db_id = [] print(f'Index reset, total data indexed {self.index.ntotal}')