File size: 4,908 Bytes
8afdc67 cb8d367 8afdc67 a7f24f5 cb8d367 8afdc67 cb8d367 a7f24f5 8afdc67 a7f24f5 cb8d367 8afdc67 cb8d367 8afdc67 cb8d367 8afdc67 cb8d367 8afdc67 a7f24f5 cb8d367 8afdc67 cb8d367 8afdc67 a7f24f5 cb8d367 8afdc67 cb8d367 8afdc67 cb8d367 8afdc67 a7f24f5 8afdc67 5f21563 8afdc67 cb8d367 8afdc67 cb8d367 a7f24f5 8afdc67 a7f24f5 8afdc67 a7f24f5 8afdc67 a7f24f5 8afdc67 a7f24f5 8afdc67 cb8d367 8afdc67 cb8d367 8afdc67 cb8d367 8afdc67 a7f24f5 8afdc67 5f21563 cb8d367 8afdc67 a7f24f5 8afdc67 cb8d367 8afdc67 a7f24f5 8afdc67 a7f24f5 8afdc67 cb8d367 8afdc67 cb8d367 8afdc67 a7f24f5 8afdc67 a7f24f5 8afdc67 a7f24f5 cb8d367 8afdc67 cb8d367 8afdc67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
# app_fast.py - Vintern-1B Fast Version
import gradio as gr
import torch
from transformers import AutoModel, AutoTokenizer
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
from PIL import Image
import time
import json
import traceback
# Setup
device = "cpu"
model = None
tokenizer = None
transform = None
def build_transform(input_size=448):
"""Optimized transform"""
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
return T.Compose([
T.Lambda(lambda img: img.convert('RGB') if hasattr(img, 'mode') and img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)
])
def load_model():
"""Load Vintern-1B (faster version)"""
global model, tokenizer, transform
try:
print("🚀 Loading Vintern-1B (Fast Version)...")
# Sử dụng model nhẹ hơn
model_name = "5CD-AI/Vintern-1B-v2" # Thay vì v3.5
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True
)
model = AutoModel.from_pretrained(
model_name,
torch_dtype=torch.float32,
trust_remote_code=True,
low_cpu_mem_usage=True
)
# Optimize model for inference
model.eval()
model = torch.jit.optimize_for_inference(model)
transform = build_transform()
print("✅ Fast model loaded!")
return True
except Exception as e:
print(f"❌ Error: {e}")
traceback.print_exc()
return False
def fast_analyze(image):
"""Optimized analysis function"""
if model is None:
return "❌ Model chưa sẵn sàng"
try:
start_time = time.time()
# Quick image processing
if image is None:
return "❌ Không có ảnh"
if hasattr(image, 'mode') and image.mode != 'RGB':
image = image.convert('RGB')
# Fast transform
image_tensor = transform(image).unsqueeze(0).to(device)
with torch.no_grad():
# Shorter, faster generation
query = "Mô tả ngắn gọn:"
try:
result = model.chat(
tokenizer,
image_tensor,
query,
generation_config=dict(
max_new_tokens=100, # Ngắn hơn → nhanh hơn
do_sample=False, # Greedy → nhanh hơn
temperature=0.7,
num_beams=1 # No beam search → nhanh hơn
)
)
except:
# Fallback nhanh
inputs = tokenizer(query, return_tensors="pt").to(device)
outputs = model.generate(
**inputs,
max_new_tokens=80,
do_sample=False,
num_beams=1
)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
result = result.replace(query, "").strip()
processing_time = time.time() - start_time
return f"""**📝 Mô tả nhanh:**
{result}
**⚡ Thời gian:** {processing_time:.1f}s
**🤖 Model:** Vintern-1B-v2 (Optimized)
**💨 Tốc độ:** {1/processing_time:.1f} FPS
---
*Model được tối ưu cho tốc độ - phù hợp real-time*
"""
except Exception as e:
return f"❌ Lỗi: {str(e)}"
# Load model
print("🚀 Starting Fast Vintern Server...")
model_loaded = load_model()
# Lightweight Gradio interface
with gr.Blocks(
title="Vintern-1B Fast",
theme=gr.themes.Base(),
) as demo:
gr.Markdown("# ⚡ Vintern-1B Fast - Tốc Độ Cao")
if model_loaded:
gr.Markdown("✅ **Model sẵn sàng!** Tối ưu cho tốc độ và real-time.")
with gr.Row():
image_input = gr.Image(type="pil", label="📤 Upload Ảnh")
result_output = gr.Textbox(
label="📋 Kết Quả",
lines=8,
show_copy_button=True
)
# Auto-analyze on upload
image_input.change(
fn=fast_analyze,
inputs=image_input,
outputs=result_output
)
gr.Markdown("""
### ⚡ Tối ưu cho tốc độ:
- **Model nhẹ**: Vintern-1B-v2 (~1.5GB)
- **Fast generation**: Greedy decode, short output
- **Optimized**: JIT compilation, no beam search
- **Real-time ready**: ~2-5 giây/ảnh
""")
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860) |