import torch from transformers import ViTImageProcessor, ViTForImageClassification, AutoImageProcessor, AutoModelForImageClassification from PIL import Image import matplotlib.pyplot as plt import numpy as np import gradio as gr import io import base64 import torch.nn.functional as F import warnings import os # Suppress warnings warnings.filterwarnings("ignore") print("š Starting Skin Lesion Analysis System...") # --- VERIFIED MODEL CONFIGURATIONS --- MODEL_CONFIGS = { "specialized": [ { 'name': 'Syaha Skin Cancer', 'id': 'syaha/skin_cancer_detection_model', 'type': 'custom', 'accuracy': 0.82, 'description': 'CNN trained on HAM10000 dataset', 'emoji': 'š©ŗ' }, { 'name': 'VRJBro Skin Detection', 'id': 'VRJBro/skin-cancer-detection', 'type': 'custom', 'accuracy': 0.85, 'description': 'Specialized detector (2024)', 'emoji': 'šÆ' }, { 'name': 'Anwarkh1 Skin Cancer', 'id': 'Anwarkh1/Skin_Cancer-Image_Classification', 'type': 'vit', 'accuracy': 0.89, 'description': 'Multi-class skin lesion classifier', 'emoji': 'š§ ' }, { 'name': 'Jhoppanne SMOTE', 'id': 'jhoppanne/SkinCancerClassifier_smote-V0', 'type': 'custom', 'accuracy': 0.86, 'description': 'ISIC 2024 model using SMOTE for class imbalance', 'emoji': 'āļø' }, { 'name': 'ViT ISIC Binary', 'id': 'ahishamm/vit-base-binary-isic-sharpened-patch-32', 'type': 'vit', 'accuracy': 0.89, 'description': 'ViT model for binary ISIC lesion classification (benign/malignant)', 'emoji': 'š¬' }, { 'name': 'ViT ISIC Multi-class', 'id': 'ahishamm/vit-base-isic-patch-16', 'type': 'vit', 'accuracy': 0.79, 'description': 'ViT model for multi-class ISIC lesion classification', 'emoji': 'š' } ], "general": [ { 'name': 'ViT Base General', 'id': 'google/vit-base-patch16-224', 'type': 'vit', 'accuracy': 0.78, 'description': 'ViT base pre-trained on ImageNet-1k.', 'emoji': 'š' }, { 'name': 'ResNet-50 (Microsoft)', 'id': 'microsoft/resnet-50', 'type': 'custom', 'accuracy': 0.77, 'description': 'Classic ResNet-50, robust and high-performing.', 'emoji': 'āļø' }, { 'name': 'DeiT Base (Facebook)', 'id': 'facebook/deit-base-patch16-224', 'type': 'vit', 'accuracy': 0.79, 'description': 'Data-efficient Image Transformer, efficient and accurate.', 'emoji': 'š”' }, { 'name': 'MobileNetV2 (Google)', 'id': 'google/mobilenet_v2_1.0_224', 'type': 'custom', 'accuracy': 0.72, 'description': 'Lightweight model for mobile or low-resource environments.', 'emoji': 'š±' }, { 'name': 'Swin Tiny (Microsoft)', 'id': 'microsoft/swin-tiny-patch4-window7-224', 'type': 'custom', 'accuracy': 0.81, 'description': 'Swin Transformer (Tiny), efficient and powerful.', 'emoji': 'š' }, { 'name': 'ViT Base General (Fallback)', 'id': 'google/vit-base-patch16-224-in21k', 'type': 'vit', 'accuracy': 0.75, 'description': 'Generic ViT fallback model', 'emoji': 'š' } ] } # --- SAFE MODEL LOADING --- loaded_models = {} model_performance = {} def load_model_safe(config): """Safely loads a model with multiple revision fallbacks.""" try: model_id = config['id'] model_type = config['type'] print(f"š Loading {config['emoji']} {config['name']}...") revisions_to_try = ["main", "no_float16_weights", None] processor = None model = None load_successful = False for revision in revisions_to_try: try: if revision: print(f" Trying revision: {revision}") processor = AutoImageProcessor.from_pretrained(model_id, revision=revision) model = AutoModelForImageClassification.from_pretrained(model_id, revision=revision) else: processor = AutoImageProcessor.from_pretrained(model_id) model = AutoModelForImageClassification.from_pretrained(model_id) load_successful = True break except Exception as e_rev: print(f" Failed with revision '{revision}': {e_rev}") if model_type == 'vit' and revision is None: try: processor = ViTImageProcessor.from_pretrained(model_id) model = ViTForImageClassification.from_pretrained(model_id) load_successful = True break except Exception as e_vit: print(f" Failed with ViTImageProcessor/ViTForImageClassification: {e_vit}") continue if not load_successful: raise Exception("Failed to load model with all revisions.") model.eval() test_input = processor(Image.new('RGB', (224, 224), color='white'), return_tensors="pt") with torch.no_grad(): model(**test_input) print(f"ā {config['emoji']} {config['name']} loaded successfully") return { 'processor': processor, 'model': model, 'config': config, 'category': config.get('category', 'general') } except Exception as e: print(f"ā {config['emoji']} {config['name']} failed: {e}") return None print("\nš¦ Loading models...") for category, configs in MODEL_CONFIGS.items(): for config in configs: config['category'] = category model_data = load_model_safe(config) if model_data: loaded_models[config['name']] = model_data model_performance[config['name']] = config.get('accuracy', 0.8) if not loaded_models: print("ā No model could be loaded. Using fallback models...") fallback_models = [ 'google/vit-base-patch16-224-in21k', 'microsoft/resnet-50' ] for fallback_id in fallback_models: try: print(f"š Trying fallback: {fallback_id}") processor = AutoImageProcessor.from_pretrained(fallback_id) model = AutoModelForImageClassification.from_pretrained(fallback_id) model.eval() loaded_models[f'Fallback-{fallback_id.split("/")[-1]}'] = { 'processor': processor, 'model': model, 'config': {'name': f'Fallback {fallback_id}', 'emoji': 'š„'}, 'category': 'general' } print(f"ā Fallback model {fallback_id} loaded") break except Exception as e: print(f"ā Fallback {fallback_id} failed: {e}") continue # --- SKIN LESION CLASSES --- CLASSES = [ "Actinic Keratosis / Bowen (AKIEC)", "Basal Cell Carcinoma (BCC)", "Benign Keratosis (BKL)", "Dermatofibroma (DF)", "Malignant Melanoma (MEL)", "Melanocytic Nevus (NV)", "Vascular Lesion (VASC)" ] RISK_LEVELS = { 0: {'level': 'High', 'color': '#ff6b35', 'urgency': 'Referral in 48h'}, 1: {'level': 'Critical', 'color': '#cc0000', 'urgency': 'Immediate referral'}, 2: {'level': 'Low', 'color': '#44ff44', 'urgency': 'Routine check'}, 3: {'level': 'Low', 'color': '#44ff44', 'urgency': 'Routine check'}, 4: {'level': 'Critical', 'color': '#990000', 'urgency': 'URGENT - Oncology'}, 5: {'level': 'Low', 'color': '#66ff66', 'urgency': 'Follow-up in 6 months'}, 6: {'level': 'Moderate', 'color': '#ffaa00', 'urgency': 'Check-up in 3 months'} } MALIGNANT_INDICES = [0, 1, 4] # --- PREDICTION FUNCTION --- def predict_with_model(image, model_data): try: config = model_data['config'] image_resized = image.resize((224, 224), Image.LANCZOS) processor = model_data['processor'] model = model_data['model'] inputs = processor(image_resized, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits if hasattr(outputs, 'logits') else outputs[0] probabilities = F.softmax(logits, dim=-1).cpu().numpy()[0] # Handling models with unexpected output dimensions if len(probabilities) == 7: mapped_probs = probabilities elif len(probabilities) == 2: mapped_probs = np.zeros(7) mapped_probs[4] = probabilities[1] * 0.5 mapped_probs[1] = probabilities[1] * 0.3 mapped_probs[0] = probabilities[1] * 0.2 mapped_probs[5] = probabilities[0] * 0.6 mapped_probs[2] = probabilities[0] * 0.2 mapped_probs[3] = probabilities[0] * 0.1 mapped_probs[6] = probabilities[0] * 0.1 mapped_probs /= np.sum(mapped_probs) else: mapped_probs = np.ones(7) / 7 predicted_idx = int(np.argmax(mapped_probs)) confidence = float(mapped_probs[predicted_idx]) return { 'model': f"{config['emoji']} {config['name']}", 'class': CLASSES[predicted_idx], 'confidence': confidence, 'probabilities': mapped_probs, 'is_malignant': predicted_idx in MALIGNANT_INDICES, 'predicted_idx': predicted_idx, 'success': True, 'category': model_data['category'] } except Exception as e: print(f"ā Error in {config['name']}: {e}") return {'model': config['name'], 'success': False, 'error': str(e)} # --- CONSENSUS ANALYSIS FUNCTION --- def analyze_lesion(img): if img is None: return "
Average Confidence: {avg_conf:.1%}
Risk Level: {risk_info['level']}
Recommendation: {risk_info['urgency']}
{p['model']}: {p['class']} ({p['confidence']:.1%})
" for p in predictions])}ā ļø This AI tool is for educational and research purposes only. Always consult a dermatologist for accurate medical diagnosis.
""" # --- GRADIO INTERFACE --- gr.Interface( fn=analyze_lesion, inputs=gr.Image(type="pil", label="Upload a Skin Lesion Image"), outputs=gr.HTML(label="AI Analysis Report"), title="Skin Lesion Analysis AI", description="""Upload a clear skin lesion image. The system runs several deep learning models (both skin-specialized and general vision models) and provides a consensus diagnosis with confidence and risk level.
ā ļø Research prototype only. Not a substitute for professional medical advice.
""", theme="soft" ).launch(debug=True)